MedLibrary.org

Prescription Medications

VERAPAMIL

VERAPAMIL — verapamil hydrochloride tablet, film coated, extended release
St Marys Medical Park Pharmacy

Verapamil-01

DESCRIPTION

Verapamil hydrochloride is a calcium ion influx inhibitor (slow channel blocker or calcium ion antagonist). Verapamil Hydrochloride Extended-Release Tablets, USP is available for oral administration as light green, capsule shaped, scored, biconvex film-coated tablets containing 240 mg verapamil hydrochloride; pink, oval shaped, scored, biconvex film-coated tablets containing 180 mg verapamil hydrochloride; and light pink, oval shaped, biconvex film-coated tablets, containing 120 mg verapamil hydrochloride. The tablets are designed for sustained-release of the drug in the gastrointestinal tract, sustained-release characteristics are not altered when the tablet is divided in half.

The structural formula of verapamil HCl is given below:

Verapamil-01
(click image for full-size original)

C27 H38 N2 O4 •HCl…………. M.W. 491.06

Benzeneacetonitrile, α [3-[[2-(3,4-dimethoxyphenyl) ethyl] methylamino]propyl]-3,4 dimethoxy-α­-(1-methylethyl) hydrochloride

Verapamil HCl is an almost white, crystalline powder, practically free of odor, with a bitter taste. It is soluble in water, chloroform and methanol. Verapamil HCl is not chemically related to other cardioactive drugs.

In addition to verapamil HCl, the verapamil hydrochloride extended-release tablet contains the following ingredients: sodium alginate, hypromellose, hydroxypropyl cellulose, magnesium stearate, colloidal silicon dioxide, polyethylene glycol, and titanium dioxide. The following are the color additives per tablet strength:

Strength (mg) Color Additive(s)

120 Ferric Oxide Red and Black Iron Oxide

180 Ferric Oxide Orange

240 Indigotine Aluminium Lake 12-14% and D&C Yellow #10 Aluminium Lake

USP Dissolution Test pending.

CLINICAL PHARMACOLOGY

Verapamil HCl is a calcium ion influx inhibitor (slow channel blocker or calcium ion antagonist) that exerts its pharmacologic effects by modulating the influx of ionic calcium across the cell membrane of the arterial smooth muscle as well as in conductile and contractile myocardial cells.

Mechanism of Action

Essential Hypertension

Verapamil HCl exerts antihypertensive effects by decreasing systemic vascular resistance, usually without orthostatic decreases in blood pressure or reflex tachycardia; bradycardia rate less than 50 beats/min) is uncommon (1.4%). During isometric or dynamic exercise verapamil HCl does not alter systolic cardiac function in patients with normal ventricular function. Verapamil HCl does not alter total serum calcium levels. However, one report suggested that calcium levels above the normal range may alter the therapeutic effect of verapamil HCl.

Other Pharmacological Actions of Verapamil HCl Include the Following

Verapamil HCl dilates the main coronary arteries and coronary arterioles, both in normal and ischemic regions, and is a potent inhibitor of coronary artery spasm, whether spontaneous or ergonovine-induced. This property increases myocardial oxygen delivery in patients with coronary artery spasm, and is responsible for the effectiveness of verapamil HCl in vasospastic (Prinzmetal’s or variant) as well as unstable angina at rest. Whether this effect plays any role in classical effort angina is not clear, but studies of exercise tolerance have not shown an increase in the maximum exercise rate-pressure product, a widely accepted measure of oxygen utilization. This suggests that, in general, relief of spasm or dilation of coronary arteries is not an important factor in classical angina. ­­­­

Verapamil HCl regularly reduces the total systemic resistance (afterload) against which the heart works both at rest and at a given level of exercise by dilating peripheral arterioles.

Electrical activity through the AV node depends, to a significant degree, upon calcium influx through the slow channel. By decreasing the influx of calcium, verapamil HCl prolongs the effective refractory period within the AV node and slows AV conduction in a rate related manner.

Normal sinus rhythm is usually not affected, but in patients with sick sinus syndrome, verapamil HCl may interfere with sinus node impulse generation and may induce sinus arrest or sinoatrial block. Atrioventricular block can occur in patients without preexisting conduction defects (see WARNINGS).

Verapamil HCl does not alter the normal atrial action potential or intraventricular conduction time, but depresses amplitude, velocity of depolarization and conduction in depressed atrial fibers. Verapamil HCl may shorten the antegrade effective refractory period of accessory bypass tracts. Acceleration of ventricular rate and/or ventricular fibrillation has been reported in patients with atrial flutter or atrial fibrillation and a coexisting accessory AV pathway following administration of verapamil (see WARNINGS).

Verapamil HCl has a local anesthetic action that is 1.6 times that of procaine on an equimolar basis. It is not known whether this action is important at the doses used in man.

Pharmacokinetics and Metabolism

With the immediate release formulation, more than 90% of the orally administered dose of verapamil HCl is absorbed. Because of rapid biotransformation of verapamil during its first pass through the portal circulation, bioavailability ranges from 20% to 35%. Peak plasma concentrations are reached between 1 and 2 hours after oral administration. Chronic oral administration of 120 mg of verapamil HCl every 6 hours resulted in plasma levels of verapamil ranging from 125 to 400 ng/mL with higher values reported occasionally. A nonlinear correlation between the verapamil dose administered and verapamil plasma levels does exist.

In early dose titration with verapamil a relationship exists between verapamil plasma concentrations and the prolongation of the PR interval. However, during chronic administration this relationship may disappear. The mean elimination half-life in single dose studies ranged from 2.8 to 7.4 hours. In these same studies, after repetitive dosing, the half-life increased to a range from 4.5 to 12 hours (after less than 10 consecutive doses given 6 hours apart). Half-life of verapamil may increase during titration. No relationship has been established between the plasma concentration of verapamil and a reduction in blood pressure.

Aging may affect the pharmacokinetics of verapamil. Elimination half-life may be prolonged in the elderly.

In multiple dose studies under fasting conditions the bioavailability measured by AUC of verapamil hydrochloride extended-release tablets was similar to verapamil hydrochloride immediate release tablets; rates of absorption were, of course, different. In a randomized, single-dose, crossover study using healthy volunteers, administration of 240 mg verapamil hydrochloride extended-release tablets with food produced peak plasma verapamil concentrations of 79 ng/mL, time to peak plasma verapamil concentration of 7.71 hours, and AUC (0-24 hr) of 841 ng-hr/mL. When verapamil hydrochloride extended-release tablets was administered to fasting subjects, peak plasma verapamil concentration was 164 ng/mL; time to peak plasma verapamil concentration was 5.21 hours; and AUC (0-24 hr) was 1,478 ng-hr/mL. Similar results were demonstrated for plasma norverapamil. Food thus produces decreased bioavailability (AUC) but a narrower peak to trough ratio. Good correlation of dose and response is not available, but controlled studies of verapamil hydrochloride extended-release tablets have shown effectiveness of doses similar to the effective doses of verapamil hydrochloride tablets (immediate release).

In healthy man, orally administered verapamil HCl undergoes extensive metabolism in the liver. Twelve metabolites have been identified in plasma; all except norverapamil are present in trace amounts only. Norverapamil can reach steady-state plasma concentrations approximately equal to those of verapamil itself. The cardiovascular activity of norverapamil appears to be approximately 20% that of verapamil. Approximately 70% of an administered dose is excreted as metabolites in the urine and 16% or more in the feces within 5 days. About 3% to 4% is excreted in the urine as unchanged drug. Approximately 90% is bound to plasma proteins. In patients with hepatic insufficiency, metabolism of immediate release verapamil is delayed and elimination half-life prolonged up to 14 to 16 hours (see PRECAUTIONS); the volume of distribution is increased and plasma clearance reduced to about 30% of normal. Verapamil clearance values suggest that patients with liver dysfunction may attain therapeutic verapamil plasma concentrations with one-third of the oral daily dose required for patients with normal liver function.

After four weeks of oral dosing (120 mg q.i.d.), verapamil and norverapamil levels were noted in the cerebrospinal fluid with estimated partition coefficient of 0.06 for verapamil and 0.04 for norverapamil.

In ten healthy males, administration of oral verapamil (80 mg every 8 hours for 6 days) and a single oral dose of ethanol (0.8 g/kg) resulted in a 17% increase in mean peak ethanol concentrations (106.45 ± 21.40 to 124.23 ± 24.74 mg•hr/dL) compared to placebo. The area under the blood ethanol concentration versus time curve (AUC over 12 hours) increased by 30% (365.67 ± 93.52 to 475.07 ± 97.24 mg•hr/dL). Verapamil AUCs were positively correlated (r = 0.71) to increased ethanol blood AUC values. (See PRECAUTIONS: Drug Interactions.)

Hemodynamics and Myocardial Metabolism

Verapamil HCl reduces afterload and myocardial contractility. Improved left ventricular diastolic function in patients with IHSS and those with coronary heart disease has also been observed with verapamil HCl therapy. In most patients, including those with organic cardiac disease, the negative inotropic action of verapamil HCl is countered by reduction of afterload and cardiac index is usually not reduced. However, in patients with severe left ventricular dysfunction (e.g., pulmonary wedge pressure above 20 mmHg or ejection fraction less than 30%), or in patients taking beta-adrenergic blocking agents or other cardiodepressant drugs, deterioration of ventricular function may occur (see, Drug Interactions).

Pulmonary Function

Verapamil HCl does not induce bronchoconstriction and hence, does not impair ventilatory function.

Page 1 of 4 1 2 3 4 »