Aggrenox (Page 3 of 6)

11  DESCRIPTION

AGGRENOX is a combination antiplatelet agent intended for oral administration. Each hard gelatin capsule contains 200 mg dipyridamole in an extended-release form and 25 mg aspirin, as an immediate-release sugar-coated tablet. In addition, each capsule contains the following inactive ingredients: acacia, aluminum stearate, colloidal silicon dioxide, corn starch, dimethicone, hypromellose, hypromellose phthalate, lactose monohydrate, methacrylic acid copolymer, microcrystalline cellulose, povidone, stearic acid, sucrose, talc, tartaric acid, titanium dioxide and triacetin.

Each capsule shell contains gelatin, red iron oxide and yellow iron oxide, titanium dioxide and water.

Dipyridamole
Dipyridamole is an antiplatelet agent chemically described as 2,2′,2”,2”’-[(4,8-Dipiperidinopyrimido[5,4-d]pyrimidine-2,6-diyl)dinitrilo]-tetraethanol. It has the following structural formula:

aggrenox-struct1

Dipyridamole is an odorless yellow crystalline substance, having a bitter taste. It is soluble in dilute acids, methanol and chloroform, and is practically insoluble in water.

Aspirin
The antiplatelet agent aspirin (acetylsalicylic acid) is chemically known as benzoic acid, 2- (acetyloxy)-, and has the following structural formula:

aggrenox-struct2

Aspirin is an odorless white needle-like crystalline or powdery substance. When exposed to moisture, aspirin hydrolyzes into salicylic and acetic acids, and gives off a vinegary odor. It is highly lipid soluble and slightly soluble in water.

12  CLINICAL PHARMACOLOGY

12.1  Mechanism of Action

The antithrombotic action of AGGRENOX is the result of the additive antiplatelet effects of dipyridamole and aspirin.

Dipyridamole
Dipyridamole inhibits the uptake of adenosine into platelets, endothelial cells and erythrocytes in vitro and in vivo; the inhibition occurs in a dose-dependent manner at therapeutic concentrations (0.5–1.9 µg/mL). This inhibition results in an increase in local concentrations of adenosine which acts on the platelet A2 -receptor thereby stimulating platelet adenylate cyclase and increasing platelet cyclic-3′,5′-adenosine monophosphate (cAMP) levels. Via this mechanism, platelet aggregation is inhibited in response to various stimuli such as platelet activating factor (PAF), collagen and adenosine diphosphate (ADP).

Dipyridamole inhibits phosphodiesterase (PDE) in various tissues. While the inhibition of cAMP-PDE is weak, therapeutic levels of dipyridamole inhibit cyclic-3′,5′-guanosine monophosphate-PDE (cGMP-PDE), thereby augmenting the increase in cGMP produced by EDRF (endothelium-derived relaxing factor, now identified as nitric oxide).

Aspirin
Aspirin inhibits platelet aggregation by irreversible inhibition of platelet cyclooxygenase and thus inhibits the generation of thromboxane A2 , a powerful inducer of platelet aggregation and vasoconstriction.

12.2  Pharmacodynamics

The effect of either agent on the other’s inhibition of platelet reactivity has not been evaluated.

12.3  Pharmacokinetics

There are no significant interactions between aspirin and dipyridamole. The kinetics of the components are unchanged by their co-administration as AGGRENOX.

Dipyridamole
Absorption
Peak plasma levels of dipyridamole are achieved 2 hours (range 1–6 hours) after administration of a daily dose of 400 mg AGGRENOX (given as 200 mg BID). The peak plasma concentration at steady-state is 1.98 µg/mL (1.01–3.99 µg/mL) and the steady-state trough concentration is 0.53 µg/mL (0.18–1.01 µg/mL).

Effect of Food
When AGGRENOX capsules were taken with a high fat meal, dipyridamole peak plasma levels (Cmax ) and total absorption (AUC) were decreased at steady-state by 20-30% compared to fasting. Due to the similar degree of inhibition of adenosine uptake at these plasma concentrations, this food effect is not considered clinically relevant.

Distribution
Dipyridamole is highly lipophilic (log P=3.71, pH=7); however, it has been shown that the drug does not cross the blood-brain barrier to any significant extent in animals. The steady-state volume of distribution of dipyridamole is about 92 L. Approximately 99% of dipyridamole is bound to plasma proteins, predominantly to alpha 1-acid glycoprotein and albumin.

Metabolism and Elimination
Dipyridamole is metabolized in the liver, primarily by conjugation with glucuronic acid, of which monoglucuronide which has low pharmacodynamic activity is the primary metabolite. In plasma, about 80% of the total amount is present as parent compound and 20% as monoglucuronide. Most of the glucuronide metabolite (about 95%) is excreted via bile into the feces, with some evidence of enterohepatic circulation. Renal excretion of parent compound is negligible and urinary excretion of the glucuronide metabolite is low (about 5%). With intravenous (i.v.) treatment of dipyridamole, a triphasic profile is obtained: a rapid alpha phase, with a half-life of about 3.4 minutes, a beta phase, with a half-life of about 39 minutes, (which, together with the alpha phase accounts for about 70% of the total area under the curve, AUC) and a prolonged elimination phase λz with a half-life of about 15.5 hours. Due to the extended absorption phase of the dipyridamole component, only the terminal phase is apparent from oral treatment with AGGRENOX which, in Trial 9.123 was 13.6 hours.

Special Populations

Geriatric Patients: In ESPS2 [see Clinical Studies (14)], plasma concentrations (determined as AUC) of dipyridamole in healthy elderly subjects (>65 years) were about 40% higher than in subjects younger than 55 years receiving treatment with AGGRENOX.

Hepatic Dysfunction: No study has been conducted with AGGRENOX in patients with hepatic dysfunction.

In a study conducted with an intravenous formulation of dipyridamole, patients with mild to severe hepatic insufficiency showed no change in plasma concentrations of dipyridamole but showed an increase in the pharmacologically inactive monoglucuronide metabolite. Dipyridamole can be dosed without restriction as long as there is no evidence of hepatic failure.

Renal Dysfunction: No study has been conducted with AGGRENOX in patients with renal dysfunction.

In ESPS2 patients [see Clinical Studies (14)], with creatinine clearances ranging from about 15 mL/min to >100 mL/min, no changes were observed in the pharmacokinetics of dipyridamole or its glucuronide metabolite if data were corrected for differences in age.

Aspirin
Absorption
Peak plasma levels of aspirin are achieved 0.63 hours (0.5–1 hour) after administration of a 50 mg aspirin daily dose from AGGRENOX (given as 25 mg BID). The peak plasma concentration at steady-state is 319 ng/mL (175–463 ng/mL). Aspirin undergoes moderate hydrolysis to salicylic acid in the liver and the gastrointestinal wall, with 50%–75% of an administered dose reaching the systemic circulation as intact aspirin.

Effect of Food
When AGGRENOX capsules were taken with a high fat meal, there was no difference for aspirin in AUC at steady-state, and the approximately 50% decrease in Cmax was not considered clinically relevant based on a similar degree of cyclooxygenase inhibition comparing the fed and fasted state.

Distribution
Aspirin is poorly bound to plasma proteins and its apparent volume of distribution is low (10 L). Its metabolite, salicylic acid, is highly bound to plasma proteins, but its binding is concentration-dependent (nonlinear). At low concentrations (<100 µg/mL), approximately 90% of salicylic acid is bound to albumin. Salicylic acid is widely distributed to all tissues and fluids in the body, including the central nervous system, breast milk, and fetal tissues. Early signs of salicylate overdose (salicylism), including tinnitus (ringing in the ears), occur at plasma concentrations approximating 200 µg/mL [see Adverse Reactions (6) and Overdosage (10)].

Metabolism and Elimination
Aspirin is rapidly hydrolyzed in plasma to salicylic acid, with a half-life of 20 minutes. Plasma levels of aspirin are essentially undetectable 2–2.5 hours after dosing and peak salicylic acid concentrations occur 1 hour (range: 0.5–2 hours) after administration of aspirin. Salicylic acid is primarily conjugated in the liver to form salicyluric acid, a phenolic glucuronide, an acyl glucuronide, and a number of minor metabolites. Salicylate metabolism is saturable and total body clearance decreases at higher serum concentrations due to the limited ability of the liver to form both salicyluric acid and phenolic glucuronide. Following toxic doses (10–20 g), the plasma half-life may be increased to over 20 hours.

The elimination of acetylsalicylic acid follows first-order kinetics with AGGRENOX and has a half-life of 0.33 hours. The half-life of salicylic acid is 1.71 hours. Both values correspond well with data from the literature at lower doses which state a resultant half-life of approximately 2–3 hours. At higher doses, the elimination of salicylic acid follows zero-order kinetics (i.e., the rate of elimination is constant in relation to plasma concentration), with an apparent half-life of 6 hours or higher. Renal excretion of unchanged drug depends upon urinary pH. As urinary pH rises above 6.5, the renal clearance of free salicylate increases from <5% to >80%. Alkalinization of the urine is a key concept in the management of salicylate overdose [see Overdosage (10)]. Following therapeutic doses, about 10% is excreted as salicylic acid and 75% as salicyluric acid, as the phenolic and acyl glucuronides, in urine.

Special Populations
Hepatic Dysfunction: Avoid aspirin in patients with severe hepatic insufficiency.

Renal Dysfunction: Avoid aspirin in patients with severe renal failure (glomerular filtration rate less than 10 mL/min).

AGGRENOX
Drug Interaction
A dedicated drug interaction study was conducted in 60 healthy volunteers to evaluate the effects of omeprazole 80 mg administered once daily on the pharmacokinetics (PK) of dipyridamole and the pharmacodynamics (PD) of acetylsalicylic acid when co-administered with AGGRENOX twice daily. Dipyridamole exposure (Cmax and AUC) at steady-state were similar with or without omeprazole co-administration. The pharmacokinetics of acetylsalicylic acid was not characterized. However, the antiplatelet activity as measured by arachidonic acid induced platelet aggregation was similar between the treatment arms at steady-state.

All MedLibrary.org resources are included in as near-original form as possible, meaning that the information from the original provider has been rendered here with only typographical or stylistic modifications and not with any substantive alterations of content, meaning or intent.

This site is provided for educational and informational purposes only, in accordance with our Terms of Use, and is not intended as a substitute for the advice of a medical doctor, nurse, nurse practitioner or other qualified health professional.

Privacy Policy | Copyright © 2024. All Rights Reserved.