Alogliptin (Page 3 of 7)

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action

Increased concentrations of the incretin hormones such as glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are released into the bloodstream from the small intestine in response to meals. These hormones cause insulin release from the pancreatic beta cells in a glucose-dependent manner but are inactivated by the DPP-4 enzyme within minutes. GLP-1 also lowers glucagon secretion from pancreatic alpha cells, reducing hepatic glucose production. In patients with type 2 diabetes mellitus, concentrations of GLP-1 are reduced but the insulin response to GLP-1 is preserved. Alogliptin is a DPP-4 inhibitor that slows the inactivation of the incretin hormones, thereby increasing their bloodstream concentrations and reducing fasting and postprandial glucose concentrations in a glucose-dependent manner in patients with type 2 diabetes mellitus. Alogliptin selectively binds to and inhibits DPP-4 but not DPP-8 or DPP-9 activity in vitro at concentrations approximating therapeutic exposures.

12.2 Pharmacodynamics

Dose-Response Relationships

Single-dose administration of alogliptin tablets to healthy subjects resulted in a peak inhibition of DPP-4 within two to three hours after dosing. The peak inhibition of DPP-4 exceeded 93% across doses of 12.5 mg to 800 mg. Inhibition of DPP-4 remained above 80% at 24 hours for doses greater than or equal to 25 mg. Peak and total exposure over 24 hours to active GLP-1 were three- to four-fold greater with alogliptin tablets (at doses of 25 to 200 mg) than placebo. In a 16 week, double-blind, placebo-controlled study, alogliptin tablets 25 mg demonstrated decreases in postprandial glucagon while increasing postprandial active GLP-1 levels compared to placebo over an eight hour period following a standardized meal. It is unclear how these findings relate to changes in overall glycemic control in patients with type 2 diabetes mellitus. In this study, alogliptin tablets 25 mg demonstrated decreases in two hour postprandial glucose compared to placebo (-30 mg/dL versus 17 mg/dL, respectively).

Multiple-dose administration of alogliptin to patients with type 2 diabetes mellitus also resulted in a peak inhibition of DPP-4 within one to two hours and exceeded 93% across all doses (25 mg, 100 mg and 400 mg) after a single dose and after 14 days of once-daily dosing. At these doses of alogliptin tablets, inhibition of DPP-4 remained above 81% at 24 hours after 14 days of dosing.

Cardiac Electrophysiology

In a randomized, placebo-controlled, four-arm, parallel-group study, 257 subjects were administered either alogliptin 50 mg, alogliptin 400 mg, moxifloxacin 400 mg or placebo once daily for a total of seven days. No increase in corrected QT (QTc) was observed with either dose of alogliptin. At the 400 mg dose, peak alogliptin plasma concentrations were 19-fold higher than the peak concentrations following the maximum recommended clinical dose of 25 mg.

12.3 Pharmacokinetics

The pharmacokinetics of alogliptin tablets has been studied in healthy subjects and in patients with type 2 diabetes mellitus. The pharmacokinetics of alogliptin tablets were similar in healthy subjects and in patients with type 2 diabetes mellitus.

After multiple-dose administration up to 400 mg for 14 days in patients with type 2 diabetes mellitus, accumulation of alogliptin was minimal with an increase in total [e.g., area under the plasma concentration curve (AUC)] and peak (i.e., Cmax ) alogliptin exposures of 34% and 9%, respectively. Total and peak exposure to alogliptin increased proportionally across single doses and multiple doses of alogliptin ranging from 25 mg to 400 mg. The intersubject coefficient of variation for alogliptin AUC was 17%.

Absorption

After administration of single, oral doses up to 800 mg in healthy subjects, the peak plasma alogliptin concentration (median Tmax ) occurred one to two hours after dosing. The absolute bioavailability of alogliptin tablets is approximately 100%.

Effect of Food

Administration of alogliptin tablets with a high-fat meal results in no significant change in total and peak exposure to alogliptin.

Distribution

Following a single, 12.5 mg intravenous infusion of alogliptin to healthy subjects, the volume of distribution during the terminal phase was 417 L, indicating that the drug is well distributed into tissues.

Alogliptin is 20% bound to plasma proteins.

Elimination

Alogliptin tablets was eliminated with a mean terminal half-life (t1/2 ) of approximately 21 hours. The renal clearance of alogliptin (9.6 L/hr) indicates some active renal tubular secretion and systemic clearance was 14.0 L/hr.

Metabolism

Alogliptin does not undergo extensive metabolism and 60% to 71% of the dose is excreted as unchanged drug in the urine.

Two minor metabolites were detected following administration of an oral dose of [14 C] alogliptin, N -demethylated, M-I (less than 1% of the parent compound), and N -acetylated alogliptin, M-II (less than 6% of the parent compound). M-I is an active metabolite and is an inhibitor of DPP-4 similar to the parent molecule; M-II does not display any inhibitory activity toward DPP-4 or other DPP-related enzymes. In vitro data indicate that CYP2D6 and CYP3A4 contribute to the limited metabolism of alogliptin.

Alogliptin exists predominantly as the (R)-enantiomer (more than 99%) and undergoes little or no chiral conversion in vivo to the (S)-enantiomer. The (S)-enantiomer is not detectable at the 25 mg dose.

Excretion

The primary route of elimination of [14 C] alogliptin-derived radioactivity occurs via renal excretion (76%) with 13% recovered in the feces, achieving a total recovery of 89% of the administered radioactive dose.

Specific Populations

Geriatric Patients

Age (18 to 80 years old) did not have any clinically meaningful effect on the pharmacokinetics of alogliptin.

Male and Female Patients

Gender did not have any clinically meaningful effect on the pharmacokinetics of alogliptin.

Racial or Ethnic Groups

Race (White, Black or African American and Asian) did not have any clinically meaningful effect on the pharmacokinetics of alogliptin.

Patients with Renal Impairment

A single-dose, open-label study was conducted to evaluate the pharmacokinetics of alogliptin 50 mg in patients with chronic renal impairment compared with healthy subjects.

In patients with mild renal impairment (creatinine clearance [CrCl] ≥60 to <90 mL/min), an approximate 1.2-fold increase in plasma AUC of alogliptin was observed.

In patients with moderate renal impairment (CrCl ≥30 to <60 mL/min), an approximate two-fold increase in plasma AUC of alogliptin was observed.

In patients with severe renal impairment (CrCl ≥15 to <30 mL/min) and end-stage renal disease (ESRD) (CrCl <15 mL/min or requiring dialysis), an approximate three- and four-fold increase in plasma AUC of alogliptin were observed, respectively. Dialysis removed approximately 7% of the drug during a three-hour dialysis session. [see Dosage and Administration (2.2), Use in Specific Populations (8.6)]

Patients with Hepatic Impairment

Total exposure to alogliptin was approximately 10% lower and peak exposure was approximately 8% lower in patients with moderate hepatic impairment (Child-Pugh Grade B) compared to healthy subjects. The magnitude of these reductions is not considered to be clinically meaningful. Patients with severe hepatic impairment (Child-Pugh Grade C) have not been studied [see Use in Specific Populations (8.7), Warnings and Precautions (5.4)].

Drug Interaction Studies

Clinical Studies

Effects of Alogliptin on the Pharmacokinetics of Other Drugs

In clinical studies, alogliptin did not meaningfully increase the systemic exposure to the following drugs that are metabolized by CYP isozymes or excreted unchanged in urine (Figure 1). No dose adjustment of alogliptin tablets is recommended based on results of the described pharmacokinetic studies.

Figure 1. Effect of Alogliptin on the Pharmacokinetic Exposure to Other Drugs

Figure 1
(click image for full-size original)

*Warfarin was given once daily at a stable dose in the range of 1 mg to 10 mg. Alogliptin had no significant effect on the prothrombin time (PT) or International Normalized Ratio (INR).

**Caffeine (1A2 substrate), tolbutamide (2C9 substrate), dextromethorphan (2D6 substrate), midazolam (3A4 substrate) and fexofenadine (P-gp substrate) were administered as a cocktail.

Effects of Other Drugs on the Pharmacokinetics of Alogliptin

There are no clinically meaningful changes in the pharmacokinetics of alogliptin when alogliptin tablets are administered concomitantly with the drugs described below (Figure 2).

Figure 2. Effect of Other Drugs on the Pharmacokinetic Exposure of Alogliptin

Figure 2
(click image for full-size original)

In Vitro Studies

Effect of Alogliptin on CYP Enzymes

Alogliptin is neither an inducer of CYP1A2, CYP2B6, CYP2C9, CYP2C19 and CYP3A4, nor an inhibitor of CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP3A4 and CYP2D6 at clinically relevant concentrations.

All MedLibrary.org resources are included in as near-original form as possible, meaning that the information from the original provider has been rendered here with only typographical or stylistic modifications and not with any substantive alterations of content, meaning or intent.

This site is provided for educational and informational purposes only, in accordance with our Terms of Use, and is not intended as a substitute for the advice of a medical doctor, nurse, nurse practitioner or other qualified health professional.

Privacy Policy | Copyright © 2024. All Rights Reserved.