Amlodipine, Valsartan and Hydrochlorothiazide (Page 7 of 9)
13 NONCLINICAL TOXICOLOGY
13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility
Studies with amlodipine/valsartan/hydrochlorothiazide
No carcinogenicity, mutagenicity, or fertility studies have been conducted with this combination. However, these studies have been conducted for amlodipine, valsartan and hydrochlorothiazide alone. Based on the preclinical safety and human pharmacokinetic studies, there is no indication of any toxicologically significant adverse interaction between these components.
Studies with amlodipine
Rats and mice treated with amlodipine maleate in the diet for up to two years, at concentrations calculated to provide daily dosage levels of 0.5, 1.25, and 2.5 mg amlodipine/kg/day, showed no evidence of a carcinogenic effect of the drug. For the mouse, the highest dose was, on mg/m2 basis, similar to the MRHD of 10 mg amlodipine/day. For the rat, the highest dose was, on a mg/m2 basis, about 2.5 times the MRHD. (Calculations based on a 60 kg patient.)
Mutagenicity studies conducted with amlodipine maleate revealed no drug-related effects at either the gene or chromosome level.
There was no effect on the fertility of rats treated orally with amlodipine maleate (males for 64 days and females for 14 days prior to mating) at doses of up to 10 mg amlodipine/kg/day (about 10 times the MRHD of 10 mg/day on a mg/m2 basis).
Studies with valsartan
There was no evidence of carcinogenicity when valsartan was administered in the diet to mice and rats for up to 2 years at concentrations calculated to provide doses of up to 160 and 200 mg/kg/day, respectively. These doses in mice and rats are about 2.4 and 6 times, respectively, the MRHD of 320 mg/day on a mg/m2 basis. (Calculations based on a 60 kg patient.)
Mutagenicity assays did not reveal any valsartan-related effects at either the gene or chromosome level. These assays included bacterial mutagenicity tests with Salmonella and E. coli , a gene mutation test with Chinese hamster V79 cells, a cytogenetic test with Chinese hamster ovary cells, and a rat micronucleus test.
Valsartan had no adverse effects on the reproductive performance of male or female rats at oral doses of up to 200 mg/kg/day. This dose is about 6 times the MRHD on a mg/m2 basis.
Studies with hydrochlorothiazide
Two-year feeding studies in mice and rats conducted under the auspices of the National Toxicology Program (NTP) uncovered no evidence of a carcinogenic potential of hydrochlorothiazide in female mice (at doses of up to approximately 600 mg/kg/day) or in male and female rats (at doses of up to approximately 100 mg/kg/day). The NTP, however, found equivocal evidence for hepatocarcinogenicity in male mice.
Hydrochlorothiazide was not genotoxic in vitro in the Ames mutagenicity assay of Salmonella Typhimurium strains TA 98, TA 100, TA 1535, TA 1537, and TA 1538 and in the Chinese Hamster Ovary (CHO) test for chromosomal aberrations, or in vivo in assays using mouse germinal cell chromosomes, Chinese hamster bone marrow chromosomes, and the Drosophila sex-linked recessive lethal trait gene. Positive test results were obtained in the in vitro CHO Sister Chromatid Exchange (clastogenicity) and Mouse Lymphoma Cell (mutagenicity) assays and in the Aspergillus Nidulans non-disjunction assay.
Hydrochlorothiazide had no adverse effects on the fertility of mice and rats of either sex in studies wherein these species were exposed via diet at doses of up to 100 and 4 mg/kg, respectively, prior to mating and throughout gestation. These doses of hydrochlorothiazide in mice and rats are 19 and 1.5 times, respectively, the MRHD on a mg/m2 basis. (Calculations assume an oral dose of 25 mg/day and a 60-kg patient.)
13.3 Developmental Toxicity
No evidence of teratogenicity or other embryo/fetal toxicity was found when pregnant rats and rabbits were treated orally with amlodipine maleate at doses of up to 10 mg amlodipine/kg/day (respectively, about 10 and 20 times the MRHD of 10 mg amlodipine on a mg/m2 basis) during their respective periods of major organogenesis. (Calculations based on a patient weight of 60 kg.) However, litter size was significantly decreased (by about 50%) and the number of intrauterine deaths was significantly increased (about 5-fold) for rats receiving amlodipine maleate at a dose equivalent to 10 mg amlodipine/kg/day for 14 days before mating and throughout mating and gestation. Amlodipine maleate has been shown to prolong both the gestation period and the duration of labor in rats at this dose. There are no adequate and well controlled studies in pregnant women.
Studies with valsartan
No teratogenic effects were observed when valsartan was administered to pregnant mice and rats at oral doses of up to 600 mg/kg/day and to pregnant rabbits at oral doses of up to 10 mg/kg/day. However, significant decreases in fetal weight, pup birth weight, pup survival rate, and slight delays in developmental milestones were observed in studies in which parental rats were treated with valsartan at oral, maternally toxic (reduction in body weight gain and food consumption) doses of 600 mg/kg/day during organogenesis or late gestation and lactation. In rabbits, fetotoxicity (i.e., resorptions, litter loss, abortions, and low body weight) associated with maternal toxicity (mortality) was observed at doses of 5 and 10 mg/kg/day. The no observed adverse effect doses of 600, 200 and 2 mg/kg/day in mice, rats and rabbits, respectively, are about 9, 6 and 0.1 times the MRHD of 320 mg/day on a mg/m2 basis. (Calculations based on a patient weight of 60 kg.)
Studies with hydrochlorothiazide
Under the auspices of the National Toxicology Program, pregnant mice and rats that received hydrochlorothiazide via gavage at doses up to 3000 and 1000 mg/kg/day, respectively, on gestation days 6 through 15 showed no evidence of teratogenicity. These doses of hydrochlorothiazide in mice and rats are 608 and 405 times, respectively, the MRHD on a mg/m2 basis. (Calculations assume an oral dose of 25 mg/day and a 60-kg patient.)
Studies with amlodipine and valsartan
In the oral embryofetal development study in rats using amlodipine besylate plus valsartan at doses equivalent to 5 mg/kg/day amlodipine plus 80 mg/kg/day valsartan, 10 mg/kg/day amlodipine plus 160 mg/kg/day valsartan, and 20 mg/kg/day amlodipine plus 320 mg/kg/day valsartan, treatment-related maternal and fetal effects (developmental delays and alterations noted in the presence of significant maternal toxicity) were noted with the high dose combination. The no-observed-adverse-effect level (NOAEL) for embryofetal effects was 10 mg/kg/day amlodipine plus 160 mg/kg/day valsartan. On a systemic exposure [AUC(0-∞) ] basis, these doses are, respectively, 4.3 and 2.7 times the systemic exposure [AUC(0-∞) ] in humans receiving the MRHD (10/320 mg/60 kg).
Studies with valsartan and hydrochlorothiazide
There was no evidence of teratogenicity in mice, rats, or rabbits treated orally with valsartan at doses up to 600, 100, and 10 mg/kg/day, respectively, in combination with hydrochlorothiazide at doses up to 188, 31, and 3 mg/kg/day. These non-teratogenic doses in mice, rats and rabbits are, respectively, 9, 3.5, and 0.5 times the MRHD of valsartan and 38, 13 and 2 times the MRHD of hydrochlorothiazide on a mg/m2 basis. (Calculations assume an oral dose of 320 mg/day valsartan in combination with 25 mg/day hydrochlorothiazide in a 60-kg patient.)
Fetotoxicity was observed in association with maternal toxicity in rats at valsartan/hydrochlorothiazide doses ≥200/63 mg/kg/day and in rabbits at valsartan/hydrochlorothiazide doses of 10/3 mg/kg/day. Evidence of fetotoxicity in rats consisted of decreased fetal weight and fetal variations of sternebrae, vertebrae, ribs, and/or renal papillae. Evidence of fetotoxicity in rabbits included increased numbers of late resorptions with resultant increases in total resorptions, postimplantation losses, and decreased number of live fetuses. The no observed adverse effect doses of the valsartan/hydrochlorothiazide combination in mice, rats and rabbits were 600/188, 100/31 and 3/1 mg/kg/day, respectively. These doses in mice, rats and rabbits are, respectively, 9, 3 and 0.18 times the MRHD of valsartan and 38, 13, and 0.5 times the MRHD of hydrochlorothiazide on a mg/m2 basis. (Calculations assume an oral dose of 320 mg/day valsartan in combination with 25 mg/day hydrochlorothiazide in a 60-kg patient.)
14 CLINICAL STUDIES
Amlodipine, valsartan and hydrochlorothiazide were studied in a double-blind, active controlled study in hypertensive patients. A total of 2271 patients with moderate to severe hypertension (mean baseline systolic/diastolic blood pressure was 170/107 mmHg) received treatments of amlodipine/valsartan/HCTZ 10/320/25 mg, valsartan/HCTZ 320/25 mg, amlodipine/valsartan 10/320 mg, or HCTZ/amlodipine 25/10 mg. At study initiation patients assigned to the 2- component arms received lower doses of their treatment combination while patients assigned to the amlodipine, valsartan and hydrochlorothiazide arm received 160/12.5 mg valsartan/hydrochlorothiazide. After 1 week, amlodipine, valsartan and hydrochlorothiazide patients were titrated to 5/160/12.5 mg amlodipine/valsartan/hydrochlorothiazide, while all other patients continued receiving their initial doses. After 2 weeks, all patients were titrated to their full treatment dose. A total of 55% of patients were male, 14% were 65 years or older, 72% were Caucasian, and 17% were black.
At week 8, the triple combination therapy produced greater reductions in blood pressure than each of the 3 dual combination treatments (p<0.0001 for both diastolic and systolic blood pressures reductions). The reductions in systolic/diastolic blood pressure with amlodipine, valsartan and hydrochlorothiazide were 7.6/5 mmHg greater than with valsartan/HCTZ, 6.2/3.3 mmHg greater than with amlodipine/valsartan, and 8.2/5.3 mmHg greater than with amlodipine/HCTZ (see Figure 1). The full blood pressure lowering effect was achieved 2 weeks after being on the maximal dose of amlodipine, valsartan and hydrochlorothiazide (see Figure 2 and Figure 3). As the pivotal study was an active-controlled trial, the treatment effects shown in Figures 1, 2, and 3 include a placebo effect of unknown size.
Figure 1: Reduction in Mean Blood Pressure at Endpoint
Figure 2: Mean Sitting Diastolic Blood Pressure by Treatment and Week
Figure 3: Mean Sitting Systolic Blood Pressure by Treatment and Week
A subgroup of 283 patients was studied with ambulatory blood pressure monitoring. The blood pressure lowering effect in the triple therapy group was maintained throughout the 24-hour period (see Figure 4 and Figure 5).
Figure 4: Mean Ambulatory Diastolic Blood Pressure at Endpoint by Treatment and Hour
Figure 5: Mean Ambulatory Systolic Blood Pressure at Endpoint by Treatment and Hour
There are no trials of the amlodipine, valsartan and hydrochlorothiazide combination tablets demonstrating reductions in cardiovascular risk in patients with hypertension, but both the amlodipine and hydrochlorothiazide components and several ARBs, which are the same pharmacological class as the valsartan component, have demonstrated such benefits.
All MedLibrary.org resources are included in as near-original form as possible, meaning that the information from the original provider has been rendered here with only typographical or stylistic modifications and not with any substantive alterations of content, meaning or intent.
https://medlibrary.org/lib/rx/meds/amlodipine-valsartan-and-hydrochlorothiazide/page/7/