Ammonia N 13 (Page 2 of 2)

11.2 Physical Characteristics

Nitrogen N13 decays by emitting positron to Carbon C13 (stable) and has a physical half-life of 9.96 minutes. The principal photons useful for imaging are the dual 511 keV gamma photons that are produced and emitted simultaneously in opposite direction when the positron interacts with an electron (Table 2).

Table 2: Principal Radiation Emission Data for Nitrogen 13
Radiation/Emission % Per Disintegration Energy
Positron(β+) 100 1190 keV (Max.)
Gamma(±)* 200 511 keV

*Produced by positron annihilationThe specific gamma ray constant (point source air kerma coefficient) for nitrogen N13 is 5.9 R/hr/mCi (1.39 x 10-6 Gy/hr/kBq) at 1 cm. The half-value layer (HVL) of lead (Pb) for 511 keV photons is 4 mm. Selected coefficients of attenuation are listed in Table 3 as a function of lead shield thickness. For example, the use of 39 mm thickness of lead will attenuate the external radiation by a factor of about 1000.

Table 3: Radiation Attenuation of 511 keV Photons by lead (Pb) shielding
Shield Thickness (Pb) mm Coefficient of Attenuation
4 0.5
8 0.25
13 0.1
26 0.01
39 0.001
52 0.0001

Table 4 lists fractions remaining at selected time intervals from the calibration time. This information may be used to correct for physical decay of the radionuclide.

Table 4: Physical Decay Chart for Nitrogen N 13
Minutes Fraction Remaining
0* 1.000
5 0.706
10 0.499
15 0.352
20 0.249
25 0.176
30 0.124

*Calibration time

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action

Ammonia N 13 Injection is a radiolabeled analog of ammonia that is distributed to all organs of the body after intravenous administration. It is extracted from the blood in the coronary capillaries into the myocardial cells where it is metabolized to glutamine N 13 and retained in the cells. The presence of ammonia N 13 and glutamine N 13 in the myocardium allows for PET imaging of the myocardium.

12.2 Pharmacodynamics

Following intravenous injection, ammonia N 13 enters the myocardium through the coronary arteries. The PET technique measures myocardial blood flow based on the assumption of a three-compartmental disposition of intravenous ammonia N 13 in the myocardium. In this model, the value of the rate constant, which represents the delivery of blood to myocardium, and the fraction of ammonia N 13 extracted into the myocardial cells, is a measure of myocardial blood flow. Optimal PET imaging of the myocardium is generally achieved between 10 to 20 minutes after administration.

12.3 Pharmacokinetics

Following intravenous injection, Ammonia N 13 Injection is cleared from the blood with a biologic half-life of about 2.84 minutes (effective half-life of about 2.21 minutes). In the myocardium, its biologic half-life has been estimated to be less than 2 minutes (effective half-life less than 1.67 minutes).

The mass dose of Ammonia N 13 Injection is very small as compared to the normal range of ammonia in the blood (0.72-3.30 mg) in a healthy adult man [see Description (11.1)].

Plasma protein binding of ammonia N 13 or its N 13 metabolites has not been studied.

Ammonia N 13 undergoes a five-enzyme step metabolism in the liver to yield urea N 13 (the main circulating metabolite). It is also metabolized to glutamine N 13 (the main metabolite in tissues) by glutamine synthesis in the skeletal muscles, liver, brain, myocardium, and other organs. Other metabolites of ammonia N 13 include small amounts of N 13 amino acid anions (acidic amino acids) in the forms of glutamate N 13 or aspartate N 13.

Ammonia N 13 is eliminated from the body by urinary excretion mainly as urea N 13.

The pharmacokinetics of Ammonia N 13 Injection have not been studied in renally impaired, hepatically impaired, or pediatric patients.

13 NONCLINICAL TOXICOLOGY

13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility

Long term animal studies have not been performed to evaluate the carcinogenic potential of Ammonia N 13 Injection. Genotoxicity assays and impairment of male and female fertility studies with Ammonia N 13 Injection have not been performed.

14 CLINICAL STUDIES


In a descriptive, prospective, blinded image interpretation study2 of adult patients with known or suspected coronary artery disease, myocardial perfusion deficits in stress and rest PET images obtained with Ammonia N 13 (N=111) or Rubidium 82 (N=82) were compared to changes in stenosis flow reserve (SFR) as determined by coronary angiography. The principal outcome of the study was the evaluation of PET defect severity relative to SFR.

PET perfusion defects at rest and stress for seven cardiac regions(anterior, apical, anteroseptal, posteroseptal, anterolateral, posterolateral, and inferior walls) were graded on a 0 to 5 scale defined as normal (0), possible (1), probable (2), mild (3), moderate (4), and severe (5) defects. Coronary angiograms were used to measure absolute and relative stenosis dimensions and to calculate stenosis flow reserve defined as the maximum value of flow at maximum coronary vasodilatation relative to rest flow under standardized hemodynamic conditions. SFR scores ranged from 0 (total occlusion) to 5 (normal).

With increasing impairment of flow reserve, the subjective PET defect severity increased. A PET defect score of 2 or higher was positively correlated with flow reserve impairment (SFR<3).

15 REFERENCES

  1. Annals of the ICRP. Publication 53. Radiation dose to patients from radiopharmaceuticals. New York: Pergamon Press, 1988.
  2. Demer, L.L.K.L.Gould, R.A.Goldstein, R.L.Kirkeeide, N.A.Mullani, R.W. Smalling, A.Nishikawa, and M.E.Merhige. Assessment of coronary artery disease severity by PET: Comparison with quantitative arteriography in 193 patients. Circulation 1989; 79: 825-35.

16 HOW SUPPLIED/STORAGE AND HANDLING

Ammonia N 13 Injection is packaged in 10 mL mulitiple dose glass vial containing between 1.11 GBq to 11.1 GBq (30 mCi to 300 mCi) of [13 N] ammonia, at the end of synthesis (EOS) reference time, in 0.9% sodium chloride injection solution in approximately 8 mL volume. The recommended dose of radioactivity (10-20 mCi) is associated with a theoretical mass dose of 0.5-1 picomoles (8.47-16.94 picograms) of Ammonia.

Storage

Store at 25°C (77°F); excursions permitted to 15-30°C (59-86°F).Use the solution within 35 minutes of the End of Synthesis (EOS) calibration.

17 PATIENT COUNSELING INFORMATION

17.1 Pre-study Hydration

Instruct patients to drink plenty of water or other fluids (as tolerated) in the 4 hours before their PET study.

17.2 Post-study Voiding

Instruct patients to void after completion of each image acquisition session and as often as possible for one hour after the PET scan ends.

17.3 Post-study Breastfeeding Avoidance

Instruct nursing patients to substitute stored breast milk or infant formula for breast milk for 2 hours after administration of Ammonia N 13 Injection.

Manufactured and Distributed by:

University of Wisconsin Radiopharmaceutical Production Facility

Madison, Wisconsin 53705

PRINCIPAL DISPLAY PANEL

Drug Product Vial Label

image description
(click image for full-size original)

Drug Product Shield Label

image description
(click image for full-size original)
AMMONIA N 13 ammonia n 13 injection
Product Information
Product Type HUMAN PRESCRIPTION DRUG Item Code (Source) NDC:72333-001
Route of Administration INTRAVENOUS DEA Schedule
Active Ingredient/Active Moiety
Ingredient Name Basis of Strength Strength
AMMONIA N-13 (AMMONIA N-13) AMMONIA N-13 37.5 mCi in 1 mL
Packaging
# Item Code Package Description Multilevel Packaging
1 NDC:72333-001-10 1 VIAL, GLASS in 1 CONTAINER contains a VIAL, GLASS
1 10 mL in 1 VIAL, GLASS This package is contained within the CONTAINER (72333-001-10)
Marketing Information
Marketing Category Application Number or Monograph Citation Marketing Start Date Marketing End Date
ANDA ANDA211740 09/09/2020
Labeler — University of Wisconsin System (161202122)
Registrant — University of Wisconsin System (161202122)
Establishment
Name Address ID/FEI Operations
UW Radiopharmaceutical Production Facility 117218915 positron emission tomography drug production (72333-001)

Revised: 10/2022 University of Wisconsin System

Page 2 of 2 1 2

All MedLibrary.org resources are included in as near-original form as possible, meaning that the information from the original provider has been rendered here with only typographical or stylistic modifications and not with any substantive alterations of content, meaning or intent.

This site is provided for educational and informational purposes only, in accordance with our Terms of Use, and is not intended as a substitute for the advice of a medical doctor, nurse, nurse practitioner or other qualified health professional.

Privacy Policy | Copyright © 2023. All Rights Reserved.