Angeliq (Page 2 of 7)

Effect of Food:

The effect of food on the absorption and bioavailability of DRSP and E2 have not been investigated following the administration of ANGELIQ. However, clinical studies with different formulations containing DRSP or E2 have shown that the bioavailability of both drugs is not affected by concomitant food intake.

Distribution

The mean volume of distribution of DRSP is 4.2 L/kg. DRSP does not bind to sex hormone binding globulin (SHBG) or corticosteroid binding globulin (CBG) but binds about 97% to other serum proteins. The distribution of exogenous estrogens is similar to that of endogenous estrogens. Estrogens are widely distributed in the body and are generally found in higher concentrations in the sex hormone target organs. Estradiol circulates in the blood bound to SHBG (37%) and to albumin (61%), while only approximately 1%2% is unbound.

Metabolism

Mean clearance of DRSP is 1.2 mL/min/kg. DRSP is extensively metabolized after oral administration. The 2 main metabolites of DRSP found in human plasma were identified to be the acid form of DRSP generated by opening of the lactone ring and the 4,5-dihydrodrospirenone-3-sulfate, both of which are formed without the involvement of the cytochrome P450 system. These metabolites were shown not to be pharmacologically active. In in vitro studies with human liver microsomes, DRSP was metabolized only to a minor extent mainly by Cytochrome P450 3A4 (CYP3A4).

Exogenous estrogens are metabolized in the same manner as endogenous estrogens. Circulating estrogens exist in a dynamic equilibrium of metabolic interconversions. These transformations take place mainly in the liver. Estradiol is converted reversibly to estrone, and both can be converted to estriol, which is the major urinary metabolite. Estrogens also undergo enterohepatic recirculation via sulfate and glucuronide conjugation in the liver, biliary secretion of conjugates into the intestine, and hydrolysis in the gut followed by reabsorption. In postmenopausal women, a significant proportion of the circulating estrogens exist as sulfate conjugates, especially estrone sulfate, which serves as a circulating reservoir for the formation of more active estrogens.

Excretion

DRSP serum levels are characterized by a terminal elimination half life of approximately 3642 hours. Excretion of DRSP was nearly complete after 10 days and amounts excreted were slightly higher in feces compared to urine. DRSP was extensively metabolized and only trace amounts of unchanged DRSP were excreted in urine and feces. At least 20 different metabolites were observed in urine and feces. About 38% to 47% of the metabolites in urine were glucuronide and sulfate conjugates. In feces, about 17% to 20% of the metabolites were excreted as glucuronides and sulfates. Estradiol, estrone, and estriol are excreted in the urine along with glucuronide and sulfate conjugates.

Special Populations

Geriatric: No pharmacokinetic studies were conducted in the geriatric population.

Pediatric: No pharmacokinetic study for ANGELIQ has been conducted in a pediatric population.

Gender: ANGELIQ is indicated for use in women only.

Race: No studies were done to determine the effect of race on the pharmacokinetics of ANGELIQ.

Patients with Hepatic Impairment: ANGELIQ is contraindicated in patients with hepatic dysfunction (also see BOLDED Warnings). The mean exposure to DRSP in women with moderate liver impairment is approximately three times the exposure in women with normal liver function.

Patients with Renal Impairment: ANGELIQ is contraindicated in patients with renal insufficiency (also see BOLDED Warnings).

The effect of renal insufficiency on the pharmacokinetics of DRSP (3 mg daily for 14 days) and the effects of DRSP on serum potassium levels were investigated in female subjects (n = 28, age 3065) with normal renal function (11 patients), and mild (10 patients) and moderate (7 patients) renal impairment. All subjects were on a low potassium diet. During the study 7 subjects continued the use of potassium-sparing drugs for the treatment of the underlying illness. On the 14th day (steady-state) of DRSP treatment, the serum DRSP levels were on average 37% higher in the group with moderate renal impairment (CLcr 3050 mL/min) compared to those in the group with normal renal function. Serum DRSP levels in the group with mild renal impairment (creatinine clearance CLcr, 5080 mL/min) were comparable to those in the group with normal renal function (CLcr, >80 mL/min). DRSP treatment was well tolerated by all groups. DRSP treatment did not show any clinically significant effect on serum potassium concentration. Although hyperkalemia was not observed in the study, in 5 of the 7 subjects who continued use of potassium sparing drugs during the study, individual mean serum potassium levels increased by up to 0.33 mEq/L. Therefore, potential exists for hyperkalemia to occur in subjects with renal impairment whose serum potassium is in the upper reference range, and who are concomitantly using potassium sparing drugs.

Drug Interactions

Effects of Drospirenone on Other Drugs

Metabolic Interactions

Metabolism of DRSP and potential effects of DRSP on hepatic cytochrome P450 (CYP) enzymes have been investigated in in vitro and in vivo studies (see Metabolism). In in vitro studies, DRSP did not affect turnover of model substrates of CYP1A2 and CYP2D6, but had an inhibitory influence on the turnover of model substrates of CYP1A1, CYP2C9, CYP2C19 and CYP3A4 with CYP2C19 being the most sensitive enzyme. The potential effect of DRSP on CYP2C19 activity was investigated in a clinical pharmacokinetic study using omeprazole as a marker substrate. In the study with 24 postmenopausal women [including 12 women with homozygous (wild type) CYP2C19 genotype and 12 women with heterozygous CYP2C19 genotype] the daily oral administration of 3mg DRSP for 14 days did not affect the systemic clearance of the CYP2C19 substrate omeprazole (40 mg) and the CYP2C19 product 5-hydroxy-omeprazole. Furthermore, no significant effect of DRSP on the systemic clearance of the CYP3A4 product omeprazole sulfone was found. These results demonstrated that DRSP did not inhibit CYP2C19 and CYP3A4 in vivo.

Two further clinical drug-drug interaction studies using simvastatin and midazolam as marker substrates for CYP3A4, were each performed in 24 healthy, postmenopausal women. The results of these studies demonstrated that pharmacokinetics of the CYP3A4 substrates were not influenced by steady-state DRSP concentrations achieved after administration of 3 mg DRSP/day.

Based on the available results of in vivo and in vitro studies, it can be concluded that, at clinical dose level, DRSP is unlikely to interact significantly with cytochrome P450 enzymes.

In vitro and in vivo studies have shown that estrogens are metabolized partially by cytochrome P450 3A4 (CYP3A4). Therefore, inducers or inhibitors of CYP3A4 may affect estrogen drug metabolism. Inducers of CYP3A4 such as St. John’s Wort preparations (Hypericum perforatum), phenobarbital, carbamazepine, and rifampin may reduce plasma concentrations of estrogens, possibly resulting in a decrease in therapeutic effects and/or changes in the uterine bleeding profile. Inhibitors of CYP3A4 such as erythromycin, clarithromycin, ketoconazole, itraconazole, ritonavir and grapefruit juice may increase plasma concentrations of estrogens and may result in side effects.

Co-Administration with Drugs that Have the Potential to Increase Serum Potassium

There is a potential for an increase in serum potassium in women taking drospirenone with other drugs that may affect electrolytes, such as angiotensin converting enzyme (ACE) inhibitors, angiotensin receptor blockers, or non-steroidal anti-inflammatory drugs (NSAIDs).

Electrolytes were studied in 230 postmenopausal women with hypertension and/or diabetes mellitus requiring an ACE inhibitor or angiotensin receptor blocker (ARB). Of these, 26 patients had a creatinine clearance >50 mL/min to <80 mL/min. Patients were given 1 mg estradiol (E2) and 3 mg drospirenone (DRSP) (n=112) or placebo (n=118) over 28 days. Non-diabetic patients also received ibuprofen 1200 mg/day for 5 days during the study. There was a single case of serum potassium >6.0 mEq/L and a single case of serum sodium <130 mEq/L on treatment, both occurring following five days of ibuprofen therapy in two women taking E2/DRSP. Serum potassium levels ≥5.5 mEq/L were observed in 8 (7.3%) E2/DRSP-treated subjects (3 diabetic and 5 non-diabetic) and in 3 (2.6%) placebo-treated subjects (2 diabetic and 1 non-diabetic). After 28 days of exposure, the mean change from baseline in serum potassium was 0.11 mEq/L for the E2/DRSP group and 0.08 mEq/L for the placebo group. None of the subjects with serum potassium levels ≥5.5 mEq/L had cardiovascular adverse events. A drug-drug interaction study of DRSP 3 mg/estradiol (E2) 1 mg versus placebo was performed in 24 mildly hypertensive postmenopausal women taking enalapril maleate 10 mg twice daily. Potassium levels were obtained every other day for a total of 2 weeks in all subjects. Mean serum potassium levels in the DRSP/E2 treatment group relative to baseline were 0.22 mEq/L higher than those in the placebo group. Serum potassium concentrations also were measured at multiple timepoints over 24 hours at baseline and on Day 14. On Day 14, the ratios for serum potassium Cmax and AUC in the DRSP/E2 group to those in the placebo group were 0.955 (90% CI: 0.914, 0.999) and 1.010 (90% CI: 0.944, 1.080), respectively. No patient in either treatment group developed hyperkalemia (serum potassium concentrations >5.5 mEq/L).

Of note, occasional or chronic use of NSAID medication was not restricted in any of the ANGELIQ clinical trials.

All MedLibrary.org resources are included in as near-original form as possible, meaning that the information from the original provider has been rendered here with only typographical or stylistic modifications and not with any substantive alterations of content, meaning or intent.

This site is provided for educational and informational purposes only, in accordance with our Terms of Use, and is not intended as a substitute for the advice of a medical doctor, nurse, nurse practitioner or other qualified health professional.

Privacy Policy | Copyright © 2024. All Rights Reserved.