Atovaquone (Page 2 of 4)

6.2 Postmarketing Experience

The following adverse reactions have been identified during post-approval use of atovaquone oral suspension. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.
Blood and Lymphatic System Disorders
Methemoglobinemia, thrombocytopenia.
Immune System Disorders
Hypersensitivity reactions including angioedema, bronchospasm, throat tightness, and urticaria.
Eye Disorders
Vortex keratopathy.
Gastrointestinal Disorders
Hepatobiliary Disorders
Hepatitis, fatal liver failure.
Skin and Subcutaneous Tissue Disorders
Erythema multiforme, Stevens-Johnson syndrome, and skin desquamation.
Renal and Urinary Disorders
Acute renal impairment.


7.1 Rifampin/Rifabutin

Concomitant administration of rifampin or rifabutin and atovaquone oral suspension is known to reduce atovaquone concentrations [see Clinical Pharmacology (12.3)]. Concomitant administration of atovaquone oral suspension and rifampin or rifabutin is not recommended.

7.2 Tetracycline

Concomitant administration of tetracycline and atovaquone oral suspension has been associated with a reduction in plasma concentrations of atovaquone [see Clinical Pharmacology (12.3)]. Caution should be used when prescribing tetracycline concomitantly with atovaquone oral suspension. Monitor patients for potential loss of efficacy of atovaquone if coadministration is necessary.

7.3 Metoclopramide

Metoclopramide may reduce the bioavailability of atovaquone and should be used only if other antiemetics are not available [see Clinical Pharmacology (12.3)].

7.4 Indinavir

Concomitant administration of atovaquone and indinavir did not result in any change in the steady-state AUC and Cmax of indinavir but resulted in a decrease in the Ctrough of indinavir [see Clinical Pharmacology (12.3)]. Caution should be exercised when prescribing atovaquone oral suspension with indinavir due to the decrease in trough concentrations of indinavir. Monitor patients for potential loss of efficacy of indinavir if coadministration with atovaquone oral suspension is necessary.


8.1 Pregnancy

Pregnancy Category C
There are no adequate and well-controlled studies in pregnant women. Atovaquone should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. Atovaquone was not teratogenic and did not cause reproductive toxicity in rats at plasma concentrations up to 2 to 3 times the estimated human exposure (dose of 1,000 mg/kg/day in rats). Atovaquone caused maternal toxicity in rabbits at plasma concentrations that were approximately one-half the estimated human exposure. Mean fetal body lengths and weights were decreased and there were higher numbers of early resorption and post-implantation loss per dam (dose of 1,200 mg/kg/day in rabbits). It is not clear whether these effects were caused by atovaquone directly or were secondary to maternal toxicity. Concentrations of atovaquone in rabbit fetuses averaged 30% of the concurrent maternal plasma concentrations. In a separate study in rats given a single 14 C-radiolabelled dose (1,000 mg/kg), concentrations of radiocarbon in rat fetuses were 18% (middle gestation) and 60% (late gestation) of concurrent maternal plasma concentrations.

8.3 Nursing Mothers

It is not known whether atovaquone is excreted into human milk. Because many drugs are excreted into human milk, caution should be exercised when atovaquone is administered to a nursing woman. In a rat study (with doses of 10 and 250 mg/kg), atovaquone concentrations in the milk were 30% of the concurrent atovaquone concentrations in the maternal plasma at both doses.

8.4 Pediatric Use

Evidence of safety and effectiveness in pediatric patients (aged 12 years and younger) has not been established. In a trial of atovaquone oral suspension administered once daily with food for 12 days to 27 HIV-1-infected, asymptomatic infants and children aged between 1 month and 13 years, the pharmacokinetics of atovaquone were age-dependent. The average steady-state plasma atovaquone concentrations in the 24 subjects with available concentration data are shown in Table 5.Table 5. Average Steady-state Plasma Atovaquone Concentrations in Pediatric Subjects


Dose of Atovaquone Oral Suspension

10 mg/kg

30 mg/kg

45 mg/kg

Average Css in mcg/mL (mean ± SD)

1-3 months

5.9(n = 1)

27.8 ± 5.8(n = 4)


>3-24 months

5.7 ± 5.1(n = 4)

9.8 ± 3.2(n = 4)

15.4 ± 6.6(n = 4)

>2-13 years

16.8 ± 6.4(n = 4)

37.1 ± 10.9(n = 3)


Css = Concentration at steady state.

8.5 Geriatric Use

Clinical trials of atovaquone did not include sufficient numbers of subjects aged 65 years and older to determine whether they respond differently from younger subjects.


In one patient who took an unspecified dose of dapsone, methemoglobinemia occurred. Rash has also been reported after overdose. There is no known antidote for atovaquone, and it is currently unknown if atovaquone is dialyzable.


Atovaquone oral suspension is a quinone antimicrobial drug. The chemical name of atovaquone is 1,4-Naphthalenedione, 2-[4-(4-chlorophenyl)cyclohexyl]-3-hydroxy-, trans. Atovaquone USP is a yellow colored powder that is freely soluble in tetrahydrofuran, soluble in chloroform and sparingly soluble in acetone. It has a molecular weight of 366.84 and the molecular formula C22 H19 ClO3 . The compound has the following structural formula:


Atovaquone oral suspension, USP is a formulation of micro-fine particles of atovaquone USP.
Each 5 mL of atovaquone oral suspension, USP contains 750 mg of atovaquone USP and the inactive ingredients benzyl alcohol, flavor, hypromellose, poloxamer, purified water, saccharin sodium, and xanthan gum.


12.1 Mechanism of Action

Atovaquone is a quinone antimicrobial drug [see Clinical Pharmacology (12.4)].

12.3 Pharmacokinetics

Atovaquone is a highly lipophilic compound with low aqueous solubility. The bioavailability of atovaquone is highly dependent on formulation and diet. The absolute bioavailability of a 750-mg dose of atovaquone oral suspension administered under fed conditions in 9 HIV-1-infected (CD4 >100 cells/mm3) volunteers was 47% ± 15%.
Administering atovaquone with food enhances its absorption by approximately 2-fold. In one trial, 16 healthy volunteers received a single dose of 750 mg atovaquone oral suspension after an overnight fast and following a standard breakfast (23 g fat: 610 kCal). The mean (±SD) area under the concentration-time curve (AUC) values under fasting and fed conditions were 324 ± 115 and 801 ± 320 h●mcg/mL, respectively, representing a 2.6 ± 1-fold increase. The effect of food (23 g fat: 400 kCal) on plasma atovaquone concentrations was also evaluated in a multiple-dose, randomized, crossover trial in 19 HIV-1-infected volunteers (CD4 <200 cells/mm3) receiving daily doses of 500 mg atovaquone oral suspension. AUC values under fasting and fed conditions were 169 ± 77 and 280 ± 114 h●mcg/mL, respectively. Maximum plasma atovaquone concentration (Cmax ) values under fasting and fed conditions were 8.8 ± 3.7 and 15.1 ± 6.1 mcg/mL, respectively.
Dose Proportionality
Plasma atovaquone concentrations do not increase proportionally with dose. When atovaquone oral suspension was administered with food at dosage regimens of 500 mg once daily, 750 mg once daily, and 1,000 mg once daily, average steady-state plasma atovaquone concentrations were 11.7 ± 4.8, 12.5 ± 5.8, and 13.5 ± 5.1 mcg/mL, respectively. The corresponding Cmax concentrations were 15.1 ± 6.1, 15.3 ± 7.6, and 16.8 ± 6.4 mcg/mL. When atovaquone oral suspension was administered to 5 HIV-1-infected volunteers at a dose of 750 mg twice daily, the average steady-state plasma atovaquone concentration was 21 ± 4.9 mcg/mL and Cmax was 24 ± 5.7 mcg/mL. The minimum plasma atovaquone concentration (Cmin ) associated with the 750-mg twice-daily regimen was 16.7 ± 4.6 mcg/mL.
Following IV administration of atovaquone, the volume of distribution at steady state (Vdss ) was 0.60 ± 0.17 L/kg (n = 9). Atovaquone is extensively bound to plasma proteins (99.9%) over the concentration range of 1 to 90 mcg/mL. In 3 HIV-1-infected children who received 750 mg atovaquone as the tablet formulation 4 times daily for 2 weeks, the cerebrospinal fluid concentrations of atovaquone were 0.04, 0.14, and 0.26 mcg/mL, representing less than 1% of the plasma concentration.
The plasma clearance of atovaquone following IV administration in 9 HIV-1-infected volunteers was 10.4 ± 5.5 mL/min (0.15 ± 0.09 mL/min/kg). The half-life of atovaquone was 62.5 ± 35.3 hours after IV administration and ranged from 67 ± 33.4 to 77.6 ± 23.1 hours across trials following administration of atovaquone oral suspension. The half-life of atovaquone is due to presumed enterohepatic cycling and eventual fecal elimination. In a trial where 14 C-labelled atovaquone was administered to healthy volunteers, greater than 94% of the dose was recovered as unchanged atovaquone in the feces over 21 days. There was little or no excretion of atovaquone in the urine (less than 0.6%). There is indirect evidence that atovaquone may undergo limited metabolism; however, a specific metabolite has not been identified.
Hepatic/Renal Impairment
The pharmacokinetics of atovaquone have not been studied in patients with hepatic or renal impairment.
Relationship between Plasma Atovaquone Concentration and Clinical Outcome
In a comparative trial of atovaquone tablets with TMP-SMX for oral treatment of mild-to-moderate PCP [see Clinical Studies (14.2)] , where subjects with HIV/AIDS received atovaquone tablets 750 mg 3 times daily for 21 days, the mean steady-state atovaquone concentration was 13.9 ± 6.9 mcg/mL (n = 133). Analysis of these data established a relationship between plasma atovaquone concentration and successful treatment (Table 6).Table 6. Relationship between Plasma Atovaquone Concentration and Successful Treatment

Steady-state Plasma Atovaquone Concentrations (mcg/mL)

Successful Treatmenta No. Successes/No. in Group (%)



0 to <5





5 to <10





10 to <15





15 to <20





20 to <25










a Successful treatment was defined as improvement in clinical and respiratory measures persisting at least 4 weeks after cessation of therapy. Improvement in clinical and respiratory measures was assessed using a composite of parameters that included oral body temperature, respiratory rate, severity scores for cough, dyspnea, and chest pain/tightness. This analysis was based on data from subjects for whom both outcome and steady-state plasma atovaquone concentration data were available.
b Based on logistic regression analysis.
A dosing regimen of atovaquone oral suspension for the treatment of mild-to-moderate PCP was selected to achieve average plasma atovaquone concentrations of approximately 20 mcg/mL, because this plasma concentration was previously shown to be well tolerated and associated with the highest treatment success rates (Table 6). In an open-label PCP treatment trial with atovaquone oral suspension, dosing regimens of 1,000 mg once daily, 750 mg twice daily, 1,500 mg once daily, and 1,000 mg twice daily were explored. The average steady-state plasma atovaquone concentration achieved at the 750-mg twice-daily dose given with meals was 22 ± 10.1 mcg/mL (n = 18).
Drug Interactions
Rifampin/Rifabutin: In a trial with 13 HIV-1-infected volunteers, the oral administration of rifampin 600 mg every 24 hours with atovaquone oral suspension 750 mg every 12 hours resulted in a 52% ± 13% decrease in the average steady-state plasma atovaquone concentration and a 37% ± 42% increase in the average steady-state plasma rifampin concentration. The half-life of atovaquone decreased from 82 ± 36 hours when administered without rifampin to 50 ± 16 hours with rifampin. In a trial of 24 healthy volunteers, the oral administration of rifabutin 300 mg once daily with atovaquone oral suspension 750 mg twice daily resulted in a 34% decrease in the average steady-state plasma atovaquone concentration and a 19% decrease in the average steady-state plasma rifabutin concentration.
Tetracycline: Concomitant treatment with tetracycline has been associated with a 40% reduction in plasma concentrations of atovaquone.
Metoclopramide: Concomitant treatment with metoclopramide has been associated with decreased bioavailability of atovaquone.
Indinavir: Concomitant administration of atovaquone (750 mg twice daily with food for 14 days) and indinavir (800 mg three times daily without food for 14 days) did not result in any change in the steady-state AUC and Cmax of indinavir, but resulted in a decrease in the Ctrough of indinavir (23% decrease [90% CI: 8%, 35%]).
Trimethoprim/Sulfamethoxazole: The possible interaction between atovaquone and TMP-SMX was evaluated in 6 HIV-1-infected adult volunteers as part of a larger multiple-dose, dose-escalation, and chronic dosing trial of atovaquone oral suspension. In this crossover trial, atovaquone oral suspension 500 mg once daily (not the approved dosage), or TMP-SMX tablets (trimethoprim 160 mg and sulfamethoxazole 800 mg) twice daily, or the combination were administered with food to achieve steady state. No difference was observed in the average steady-state plasma atovaquone concentration after coadministration with TMP-SMX.
Coadministration of atovaquone with TMP-SMX resulted in a 17% and 8% decrease in average steady-state concentrations of trimethoprim and sulfamethoxazole in plasma, respectively.
Zidovudine: Data from 14 HIV-1-infected volunteers who were given atovaquone tablets 750 mg every 12 hours with zidovudine 200 mg every 8 hours showed a 24% ± 12% decrease in zidovudine apparent oral clearance, leading to a 35% ± 23% increase in plasma zidovudine AUC. The glucuronide metabolite:parent ratio decreased from a mean of 4.5 when zidovudine was administered alone to 3.1 when zidovudine was administered with atovaquone tablets. This effect is minor and would not be expected to produce clinically significant events. Zidovudine had no effect on atovaquone pharmacokinetics.

All resources are included in as near-original form as possible, meaning that the information from the original provider has been rendered here with only typographical or stylistic modifications and not with any substantive alterations of content, meaning or intent.

This site is provided for educational and informational purposes only, in accordance with our Terms of Use, and is not intended as a substitute for the advice of a medical doctor, nurse, nurse practitioner or other qualified health professional.

Privacy Policy | Copyright © 2022. All Rights Reserved.