Azathioprine Sodium

AZATHIOPRINE SODIUM- azathioprine sodium injection, powder, lyophilized, for solution
Bedford Laboratories

Rx ONLY

WARNING — MALIGNANCY

Chronic immunosuppression with azathioprine, a purine antimetabolite increases risk of malignancy in humans. Reports of malignancy include post-transplant lymphoma and hepatosplenic T-cell lymphoma (HSTCL) in patients with inflammatory bowel disease. Physicians using this drug should be very familiar with this risk as well as with the mutagenic potential to both men and women and with possible hematologic toxicities. Physicians should inform patients of the risk of malignancy with azathioprine. See WARNINGS.

DESCRIPTION

Azathioprine Sodium for Injection, USP is a sterile lyophilized material, which when reconstituted with Sterile Water for Injection yields a solution for intravenous administration. Each vial contains azathioprine sodium equivalent to 100 mg azathioprine, an immunosuppressive antimetabolite. Each vial also contains sodium hydroxide and, if necessary, hydrochloric acid to adjust the pH.

Azathioprine is chemically 6-[(1-methyl-4-nitroimidazol-5-yl)thio]purine. The structural formula of azathioprine sodium is:

Structural Formula
(click image for full-size original)

Molecular Formula: C9 H7 N7 O2 SNa Molecular Weight: 300.28

It is an imidazolyl derivative of 6-mercaptopurine and many of its biological effects are similar to those of the parent compound.

Azathioprine is insoluble in water, but may be dissolved with addition of one molar equivalent of alkali. The sodium salt of azathioprine is sufficiently soluble to make a 10 mg/mL water solution which is stable for 24 hours at 59° to 77°F (15° to 25°C). Azathioprine is stable in solution at neutral or acid pH but hydrolysis to mercaptopurine occurs in excess sodium hydroxide (0.1N), especially on warming. Conversion to mercaptopurine also occurs in the presence of sulfhydryl compounds such as cysteine, glutathione and hydrogen sulfide.

CLINICAL PHARMACOLOGY

Azathioprine is well absorbed following oral administration. Maximum serum radioactivity occurs at 1 to 2 hours after oral 35 S-azathioprine and decays with a half-life of 5 hours. This is not an estimate of the half-life of azathioprine itself, but is the decay rate for all 35 S-containing metabolites of the drug. Because of extensive metabolism, only a fraction of the radioactivity is present as azathioprine. Usual doses produce blood levels of azathioprine, and of mercaptopurine derived from it, which are low (<1 mcg/mL). Blood levels are of little predictive value for therapy since the magnitude and duration of clinical effects correlate with thiopurine nucleotide levels in tissues rather than with plasma drug levels. Azathioprine and mercaptopurine are moderately bound to serum proteins (30%) and are partially dialyzable. (See OVERDOSAGE).

Azathioprine is metabolized to 6-mercaptopurine (6-MP). Both compounds are rapidly eliminated from blood and are oxidized or methylated in erythrocytes and liver; no azathioprine or mercaptopurine is detectable in urine after 8 hours. Activation of 6-mercaptopurine occurs via hypoxanthine-guanine phosphoribosyltransferase (HGPRT) and a series of multi-enzymatic processes involving kinases to form 6-thioguanine nucleotides (6TGNs) as major metabolites (See Metabolism Scheme in Figure 1). The cytotoxicity of azathioprine is due, in part, to the incorporation of 6-TGN into DNA.

6-MP undergoes two major inactivation routes (Figure 1). One is thiol methylation, which is catalyzed by the enzyme thiopurine S-methyltransferase (TPMT), to form the inactive metabolite methyl-6-MP (6-MeMP). TPMT activity is controlled by a genetic polymorphism. 1,2,3 For Caucasians and African Americans, approximately 10% of the population inherit one non-functional TPMT allele (heterozygous) conferring intermediate TPMT activity, and 0.3% inherit two TPMT non-functional alleles (homozygous) for low or absent TPMT activity. Non-functional alleles are less common in Asians. TPMT activity correlates inversely with 6TGN levels in erythrocytes and presumably other hematopoietic tissues, since these cells have negligible xanthine oxidase (involved in the other inactivation pathway) activities, leaving TPMT methylation as the only inactivation pathway. Patients with intermediate TPMT activity may be at increased risk of myelotoxicity if receiving conventional doses of azathioprine. Patients with low or absent TPMT activity are at an increased risk of developing severe, life-threatening myelotoxicity if receiving conventional doses of azathioprine.4-9 TPMT genotyping or phenotyping (red blood cell TPMT activity) can help identify patients who are at an increased risk for developing azathioprine toxicity.2, 3, 7, 8, 9 Accurate phenotyping (red blood cell TPMT activity) results are not possible in patients who have received recent blood transfusions. (See WARNINGS, PRECAUTIONS: Drug Interactions, PRECAUTIONS: Laboratory Tests and ADVERSE REACTIONS sections).

Figure 1. Metabolism pathway of azathioprine : competing pathways result in inactivation by TPMT or XO, or incorporation of cytotoxic nucleotides into DNA.

Figure 1
(click image for full-size original)

GMPS: Guanosine monophosphate synthetase; HGPRT: Hypoxanthine-guanine-phosphoribosyl-transferase; IMPD: Inosine monophosphate dehydrogenase; MeMP: Methylmercaptopurine; MeMPN: Methylmercaptopurine nucleotide; TGN: Thioguanine nucleotides; TIMP: Thioinosine monophosphate; TPMT: Thiopurine S-methyltransferase; TU Thiouric acid; XO: Xanthine oxidase (Adapted from Pharmacogenomics 2002; 3:89-98; and Cancer Res 2001; 61:5810-5816.)

Another inactivation pathway is oxidation, which is catalyzed by xanthine oxidase (XO) to form 6-thiouric acid. The inhibition of xanthine oxidase in patients receiving allopurinol is the basis for the azathioprine dosage reduction required in these patients (see PRECAUTIONS: Drug Interactions). Proportions of metabolites are different in individual patients, and this presumably accounts for variable magnitude and duration of drug effects. Renal clearance is probably not important in predicting biological effectiveness or toxicities, although dose reduction is practiced in patients with poor renal function.

Homograft Survival

The use of azathioprine for inhibition of renal homograft rejection is well established, the mechanism(s) for this action are somewhat obscure. The drug suppresses hypersensitivities of the cell-mediated type and causes variable alterations in antibody production. Suppression of T-cell effects, including ablation of T-cell suppression, is dependent on the temporal relationship to antigenic stimulus or engraftment. This agent has little effect on established graft rejections or secondary responses.

Alterations in specific immune responses or immunologic functions in transplant recipients are difficult to relate specifically to immunosuppression by azathioprine. These patients have subnormal responses to vaccines, low numbers of T-cells, and abnormal phagocytosis by peripheral blood cells, but their mitogenic responses, serum immunoglobulins and secondary antibody responses are usually normal.

Immunoinflammatory Response

Azathioprine suppresses disease manifestations as well as underlying pathology in animal models of auto-immune disease. For example, the severity of adjuvant arthritis is reduced by azathioprine.

The mechanisms whereby azathioprine affects autoimmune diseases are not known. Azathioprine is immunosuppressive, delayed hypersensitivity and cellular cytotoxicity tests being suppressed to a greater degree than are antibody responses. In the rat model of adjuvant arthritis, azathioprine has been shown to inhibit the lymph node hyperplasia which precedes the onset of the signs of the disease. Both the immunosuppressive and therapeutic effects in animal models are dose-related. Azathioprine is considered a slow-acting drug and effects may persist after the drug has been discontinued.

All MedLibrary.org resources are included in as near-original form as possible, meaning that the information from the original provider has been rendered here with only typographical or stylistic modifications and not with any substantive alterations of content, meaning or intent.

This site is provided for educational and informational purposes only, in accordance with our Terms of Use, and is not intended as a substitute for the advice of a medical doctor, nurse, nurse practitioner or other qualified health professional.

Privacy Policy | Copyright © 2020. All Rights Reserved.