Cardizem

CARDIZEM- diltiazem hydrochloride tablet, coated
Bausch Health US LLC

Rx only

DESCRIPTION

CARDIZEM® (diltiazem hydrochloride) is a calcium ion cellular influx inhibitor (slow channel blocker or calcium antagonist). Chemically, diltiazem hydrochloride is 1,5-Benzothiazepin-4(5H)-one, 3-(acetyloxy)-5-[2-(dimethylamino)ethyl]-2, 3-dihydro-2-(4-methoxyphenyl)-, monohydrochloride,(+)-cis -. The chemical structure is:

ChemStructure

Diltiazem hydrochloride is a white to off-white crystalline powder with a bitter taste. It is soluble in water, methanol, and chloroform. It has a molecular weight of 450.98. Each tablet of CARDIZEM contains 30 mg, 60 mg, 90 mg, or 120 mg diltiazem hydrochloride.

Also contains: colloidal silicon dioxide, D&C Yellow #10 Aluminum Lake, FD&C Blue #1 Aluminum Lake (30 mg and 90 mg), FD&C Yellow #6 Aluminum Lake (60 mg and 120 mg), hydroxypropyl cellulose, hypromellose, lactose, magnesium stearate, methylparaben, microcrystalline cellulose, and polyethylene glycol.

For oral administration.

CLINICAL PHARMACOLOGY

The therapeutic benefits achieved with CARDIZEM are believed to be related to its ability to inhibit the influx of calcium ions during membrane depolarization of cardiac and vascular smooth muscle.

Mechanisms of Action

Although precise mechanisms of its antianginal actions are still being delineated, CARDIZEM is believed to act in the following ways:

Angina Due to Coronary Artery Spasm: CARDIZEM has been shown to be a potent dilator of coronary arteries both epicardial and subendocardial. Spontaneous and ergonovine-induced coronary artery spasms are inhibited by CARDIZEM.
Exertional Angina: CARDIZEM has been shown to produce increases in exercise tolerance, probably due to its ability to reduce myocardial oxygen demand. This is accomplished via reductions in heart rate and systemic blood pressure at submaximal and maximal exercise workloads.

In animal models, diltiazem interferes with the slow inward (depolarizing) current in excitable tissue. It causes excitation-contraction uncoupling in various myocardial tissues without changes in the configuration of the action potential. Diltiazem produces relaxation of coronary vascular smooth muscle and dilation of both large and small coronary arteries at drug levels which cause little or no negative inotropic effect. The resultant increases in coronary blood flow (epicardial and subendocardial) occur in ischemic and nonischemic models and are accompanied by dose-dependent decreases in systemic blood pressure and decreases in peripheral resistance.

Hemodynamic and Electrophysiologic Effects

Like other calcium antagonists, diltiazem decreases sinoatrial and atrioventricular conduction in isolated tissues and has a negative inotropic effect in isolated preparations. In the intact animal, prolongation of the AH interval can be seen at higher doses.

In man, diltiazem prevents spontaneous and ergonovine-provoked coronary artery spasm. It causes a decrease in peripheral vascular resistance and a modest fall in blood pressure, and in exercise tolerance studies in patients with ischemic heart disease, reduces the heart rate-blood pressure product for any given workload. Studies to date, primarily in patients with good ventricular function, have not revealed evidence of a negative inotropic effect; cardiac output, ejection fraction, and left ventricular end-diastolic pressure have not been affected. There are as yet few data on the interaction of diltiazem and beta-blockers. Resting heart rate is usually unchanged or slightly reduced by diltiazem.

Intravenous diltiazem in doses of 20 mg prolongs AH conduction time and AV node functional and effective refractory periods approximately 20%. In a study involving single oral doses of 300 mg of CARDIZEM in six normal volunteers, the average maximum PR prolongation was 14% with no instances of greater than first-degree AV block. Diltiazem-associated prolongation of the AH interval is not more pronounced in patients with first-degree heart block. In patients with sick sinus syndrome, diltiazem significantly prolongs sinus cycle length (up to 50% in some cases).

Chronic oral administration of CARDIZEM in doses of up to 240 mg/day has resulted in small increases in PR interval but has not usually produced abnormal prolongation.

Pharmacokinetics and Metabolism

Diltiazem is well absorbed from the gastrointestinal tract and is subject to an extensive first-pass effect, giving an absolute bioavailability (compared to intravenous dosing) of about 40%. CARDIZEM undergoes extensive metabolism in which 2% to 4% of the unchanged drug appears in the urine. In vitro binding studies show CARDIZEM is 70% to 80% bound to plasma proteins. Competitive in vitro ligand binding studies have also shown CARDIZEM binding is not altered by therapeutic concentrations of digoxin, hydrochlorothiazide, phenylbutazone, propranolol, salicylic acid, or warfarin. The plasma elimination half-life following single or multiple drug administration is approximately 3.0 to 4.5 hours. Desacetyl diltiazem is also present in the plasma at levels of 10% to 20% of the parent drug and is 25% to 50% as potent as a coronary vasodilator as diltiazem. Minimum therapeutic plasma levels of CARDIZEM appear to be in the range of 50 to 200 ng/mL. There is a departure from linearity when dose strengths are increased. A study that compared patients with normal hepatic function to patients with cirrhosis found an increase in half-life and a 69% increase in AUC (area-under-the-plasma concentration vs. time curve) in the hepatically impaired patients. A single study in nine patients with severely impaired renal functions showed no difference in the pharmacokinetic profile of diltiazem as compared to patients with normal renal function.

CARDIZEM Tablets: Diltiazem is absorbed from the tablet formulation to about 98% of a reference solution. Single oral doses of 30 to 120 mg of CARDIZEM tablets result in detectable plasma levels within 30 to 60 minutes and peak plasma levels 2 to 4 hours after drug administration. As the dose of CARDIZEM tablets is increased from a daily dose of 120 mg (30 mg qid) to 240 mg (60 mg qid) daily, there is an increase in area-under-the-curve of 2.3 times. When the dose is increased from 240 mg to 360 mg daily, there is an increase in area-under-the-curve of 1.8 times.

INDICATIONS AND USAGE

CARDIZEM is indicated for the management of chronic stable angina and angina due to coronary artery spasm.

CONTRAINDICATIONS

CARDIZEM is contraindicated in:

Patients with sick sinus syndrome except in the presence of a functioning ventricular pacemaker
Patients with second- or third-degree AV block except in the presence of a functioning ventricular pacemaker
Patients with hypotension (less than 90 mm Hg systolic)
Patients who have demonstrated hypersensitivity to the drug
Patients with acute myocardial infarction and pulmonary congestion documented by x-ray on admission

WARNINGS

1.
Cardiac Conduction: CARDIZEM prolongs AV node refractory periods without significantly prolonging sinus node recovery time, except in patients with sick sinus syndrome. This effect may rarely result in abnormally slow heart rates (particularly in patients with sick sinus syndrome) or second- or third-degree AV block (six of 1243 patients for 0.48%). Concomitant use of diltiazem with beta-blockers or digitalis may result in additive effects on cardiac conduction. A patient with Prinzmetal’s angina developed periods of asystole (2 to 5 seconds) after a single dose of 60 mg of diltiazem (see ADVERSE REACTIONS).
2.
Congestive Heart Failure: Although diltiazem has a negative inotropic effect in isolated animal tissue preparations, hemodynamic studies in humans with normal ventricular function have not shown a reduction in cardiac index nor consistent negative effects on contractility (dP/dt). Experience with the use of CARDIZEM alone or in combination with beta-blockers in patients with impaired ventricular function is very limited. Caution should be exercised when using the drug in such patients.
3.
Hypotension: Decreases in blood pressure associated with CARDIZEM therapy may occasionally result in symptomatic hypotension.
4.
Acute Hepatic Injury: In rare instances, significant elevations in enzymes such as alkaline phosphatase, LDH, SGOT, SGPT, and other phenomena consistent with acute hepatic injury have been noted. These reactions have been reversible upon discontinuation of drug therapy. The relationship to CARDIZEM is uncertain in most cases, but probable in some (see PRECAUTIONS).
Page 1 of 4 1 2 3 4

All MedLibrary.org resources are included in as near-original form as possible, meaning that the information from the original provider has been rendered here with only typographical or stylistic modifications and not with any substantive alterations of content, meaning or intent.

This site is provided for educational and informational purposes only, in accordance with our Terms of Use, and is not intended as a substitute for the advice of a medical doctor, nurse, nurse practitioner or other qualified health professional.

Privacy Policy | Copyright © 2020. All Rights Reserved.