CEFTRIAXONE

CEFTRIAXONE- ceftriaxone sodium injection, powder, for solution
CEFTRIAXONE — ceftriaxone sodium injection, powder, for solution
Wockhardt Limited

Rx only

To reduce the development of drug-resistant bacteria and maintain the effectiveness of ceftriaxone for injection and other antibacterial drugs, ceftriaxone for injection should be used only to treat or prevent infections that are proven or strongly suspected to be caused by bacteria.

DESCRIPTION

Ceftriaxone for injection, USP is a sterile, semisynthetic, broad-spectrum cephalosporin antibiotic for intravenous or intramuscular administration. Ceftriaxone sodium is (6R ,7R)-7-[2-(2-Amino-4-thiazolyl)glyoxylamido]-8-oxo-3-[[(1,2,5,6-tetrahydro-2-methyl-5,6-dioxo-as -triazin-3-yl)thio]methyl]-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid, 72 -(Z)-(O -methyloxime), disodium salt, sesquaterhydrate.

The chemical formula of ceftriaxone sodium is C18 H16 N8 Na2 O7 S3 ●3.5H2 O. It has a calculated molecular weight of 661.59 and the following structural formula:

Structure
(click image for full-size original)

Ceftriaxone for injection, USP is a white to yellowish-orange crystalline powder which is readily soluble in water, sparingly soluble in methanol and very slightly soluble in ethanol. The pH of a 1% aqueous solution is approximately 6.7. The color of ceftriaxone for injection, USP solutions ranges from light yellow to amber, depending on the length of storage, concentration and diluent used.

Ceftriaxone for injection, USP contains approximately 83 mg (3.6 mEq) of sodium per gram of ceftriaxone activity.

CLINICAL PHARMACOLOGY

Average plasma concentrations of ceftriaxone following a single 30-minute intravenous (IV) infusion of a 0.5, 1 or 2 g dose and intramuscular (IM) administration of a single 0.5 (250 mg/mL or 350 mg/mL concentrations) or 1 g dose in healthy subjects are presented in Table 1.

Table 1. Ceftriaxone Plasma Concentrations After Single Dose Administration

* IV doses were infused at a constant rate over 30 minutes.

ND = Not determined.

Dose/Route Average Plasma Concentrations (mcg/mL)
0.5 hr 1 hr 2 hr 4 hr 6 hr 8 hr 12 hr 16 hr 24 hr
0.5 g IV* 82 59 48 37 29 23 15 10 5
0.5 g IM 250 mg/mL 22 33 38 35 30 26 16 ND 5
0.5 g IM 350 mg/mL 20 32 38 34 31 24 16 ND 5
1 g IV* 151 111 88 67 53 43 28 18 9
1 g IM 40 68 76 68 56 44 29 ND ND
2 g IV* 257 192 154 117 89 74 46 31 15

Ceftriaxone was completely absorbed following IM administration with mean maximum plasma concentrations occurring between 2 and 3 hours post-dose. Multiple IV or IM doses ranging from 0.5 to 2 g at 12- to 24-hour intervals resulted in 15% to 36% accumulation of ceftriaxone above single dose values.

Ceftriaxone concentrations in urine are shown in Table 2.

Table 2. Urinary Concentrations of Ceftriaxone After Single Dose Administration

ND = Not determined.

Dose/Route Average Urinary Concentrations (mcg/mL)
0 to 2 hr 2 to 4 hr 4 to 8 hr 8 to 12 hr 12 to 24 hr 24 to 48 hr
0.5 g IV 526 366 142 87 70 15
0.5 g IM 115 425 308 127 96 28
1 g IV 995 855 293 147 132 32
1 g IM 504 628 418 237 ND ND
2 g IV 2692 1976 757 274 198 40

Thirty-three percent to 67% of a ceftriaxone dose was excreted in the urine as unchanged drug and the remainder was secreted in the bile and ultimately found in the feces as microbiologically inactive compounds. After a 1 g IV dose, average concentrations of ceftriaxone, determined from 1 to 3 hours after dosing, were 581 mcg/mL in the gallbladder bile, 788 mcg/mL in the common duct bile, 898 mcg/mL in the cystic duct bile, 78.2 mcg/g in the gallbladder wall and 62.1 mcg/mL in the concurrent plasma.

Over a 0.15 to 3 g dose range in healthy adult subjects, the values of elimination half-life ranged from 5.8 to 8.7 hours; apparent volume of distribution from 5.78 to 13.5 L; plasma clearance from 0.58 to 1.45 L/hour; and renal clearance from 0.32 to 0.73 L/hour. Ceftriaxone is reversibly bound to human plasma proteins, and the binding decreased from a value of 95% bound at plasma concentrations of <25 mcg/mL to a value of 85% bound at 300 mcg/mL. Ceftriaxone crosses the blood placenta barrier.

The average values of maximum plasma concentration, elimination half-life, plasma clearance and volume of distribution after a 50 mg/kg IV dose and after a 75 mg/kg IV dose in pediatric patients suffering from bacterial meningitis are shown in Table 3. Ceftriaxone penetrated the inflamed meninges of infants and pediatric patients; CSF concentrations after a 50 mg/kg IV dose and after a 75 mg/kg IV dose are also shown in Table 3.

Table 3. Average Pharmacokinetic Parameters of Ceftriaxone in Pediatric Patients With Meningitis
50 mg/kg IV 75 mg/kg IV
Maximum Plasma Concentrations (mcg/mL) 216 275
Elimination Half-life (hr) 4.6 4.3
Plasma Clearance (mL/hr/kg) 49 60
Volume of Distribution (mL/kg) 338 373
CSF Concentration-inflamed meninges (mcg/mL) 5.6 6.4
Range (mcg/mL) 1.3 to 18.5 1.3 to 44
Time after dose (hr) 3.7 (±1.6) 3.3 (±1.4)

Compared to that in healthy adult subjects, the pharmacokinetics of ceftriaxone were only minimally altered in elderly subjects and in patients with renal impairment or hepatic dysfunction (Table 4); therefore, dosage adjustments are not necessary for these patients with ceftriaxone dosages up to 2 g per day. Ceftriaxone was not removed to any significant extent from the plasma by hemodialysis; in six of 26 dialysis patients, the elimination rate of ceftriaxone was markedly reduced.

Table 4. Average Pharmacokinetic Parameters of Ceftriaxone in Humans

*Creatinine clearance.

SubjectGroup EliminationHalf-Life(hr) PlasmaClearance(L/hr) Volume ofDistribution(L)
Healthy Subjects 5.8 to 8.7 0.58 to 1.45 5.8 to 13.5
Elderly Subjects (mean age, 70.5 yr) 8.9 0.83 10.7
Patients With Renal Impairment
Hemodialysis Patients (0 to 5 L/min)* 14.7 0.65 13.7
Severe (5 to 15 mL/min) 15.7 0.56 12.5
Moderate (16 to 30 mL/min) 11.4 0.72 11.8
Mild (31 to 60 mL/min) 12.4 0.70 13.3
Patients With Liver Disease 8.8 1.1 13.6

The elimination of ceftriaxone is not altered when ceftriaxone for injection is co-administered with probenecid.

Pharmacokinetics in the Middle Ear Fluid: In one study, total ceftriaxone concentrations (bound and unbound) were measured in middle ear fluid obtained during the insertion of tympanostomy tubes in 42 pediatric patients with otitis media. Sampling times were from 1 to 50 hours after a single intramuscular injection of 50 mg/kg of ceftriaxone. Mean (± SD) ceftriaxone levels in the middle ear reached a peak of 35 (± 12) mcg/mL at 24 hours, and remained at 19 (± 7) mcg/mL at 48 hours. Based on middle ear fluid ceftriaxone concentrations in the 23 to 25 hour and the 46 to 50 hour sampling time intervals, a half-life of 25 hours was calculated. Ceftriaxone is highly bound to plasma proteins. The extent of binding to proteins in the middle ear fluid is unknown.

Interaction with Calcium: Two in vitro studies, one using adult plasma and the other neonatal plasma from umbilical cord blood have been carried out to assess interaction of ceftriaxone and calcium. Ceftriaxone concentrations up to 1 mM (in excess of concentrations achieved in vivo following administration of 2 grams ceftriaxone infused over 30 minutes) were used in combination with calcium concentrations up to 12 mM (48 mg/dL). Recovery of ceftriaxone from plasma was reduced with calcium concentrations of 6 mM (24 mg/dL) or higher in adult plasma or 4 mM (16 mg/dL) or higher in neonatal plasma. This may be reflective of ceftriaxone-calcium precipitation.

Microbiology:

Mechanism of Action

Ceftriaxone is a bactericidal agent that acts by inhibition of bacterial cell wall synthesis. Ceftriaxone has activity in the presence of some beta-lactamases, both penicillinases and cephalosporinases, of Gram-negative and Gram-positive bacteria.

Mechanism of Resistance

Resistance to ceftriaxone is primarily through hydrolysis by beta-lactamase, alteration of penicillin-binding proteins (PBPs), and decreased permeability.

Interaction with Other Antimicrobials

In an in vitro study antagonistic effects have been observed with the combination of chloramphenicol and ceftriaxone.

Antibacterial Activity

Ceftriaxone has been shown to be active against most isolates of the following bacteria, both in vitro and in clinical infections as described in the INDICATIONS AND USAGE (1) section:

Gram-negative bacteria

Acinetobacter calcoaceticus

Enterobacter aerogenes

Enterobacter cloacae

Escherichia coli

Haemophilus influenzae

Haemophilus parainfluenzae

Klebsiella oxytoca

Klebsiella pneumoniae

Moraxella catarrhalis

Morganella morganii

Neisseria gonorrhoeae

Neisseria meningitidis

Proteus mirabilis

Proteus vulgaris

Pseudomonas aeruginosa

Serratia marcescens

Gram-positive bacteria

Staphylococcus aureus

Staphylococcus epidermidis

Streptococcus pneumoniae

Streptococcus pyogenes

Viridans group streptococci

Anaerobic bacteria

Bacteroides fragilis

Clostridium species

Peptostreptococcus species

The following in vitro data are available, but their clinical significance is unknown. At least 90 percent of the following microorganisms exhibit an in vitro minimum inhibitory concentration (MIC) less than or equal to the susceptible breakpoint for ceftriaxone. However, the efficacy of ceftriaxone in treating clinical infections due to these microorganisms has not been established in adequate and well-controlled clinical trials.

Gram-negative bacteria

Citrobacter diversus

Citrobacter freundii

Providencia species (including Providencia rettgeri)

Salmonella species (including Salmonella typhi)

Shigella species

Gram-positive bacteria:

Streptococcus agalactiae

Anaerobic bacteria:

Porphyromonas (Bacteroides) melaninogenicus

Prevotella (Bacteroides) bivius

Susceptibility Test Methods

When available, the clinical microbiology laboratory should provide the results of in vitro susceptibility test results for antimicrobial drug products used in resident hospitals to the physician as periodic reports that describe the susceptibility profile of nosocomial and community-acquired pathogens. These reports should aid the physician in selecting an antibacterial drug product for treatment.

Dilution techniques:

Quantitative methods are used to determine antimicrobial minimal inhibitory concentrations (MICs). These MICs provide estimates of the susceptibility of bacteria to antimicrobial compounds. The MICs should be determined using a standardized test method1,3. The MIC values should be interpreted according to criteria provided in Table 5.

Diffusion techniques:

Quantitative methods that require measurement of zone diameters also provide reproducible estimates of the susceptibility of bacteria to antimicrobial compounds. The zone size provides an estimate of the susceptibility of bacteria to antimicrobial compounds. The zone size should be determined using a standardized test method.2,3. This procedure uses paper disks impregnated with 30 mcg ceftriaxone to test the susceptibility of microorganisms to ceftriaxone. The disk diffusion interpretive criteria are provided in Table 5.

Anaerobic techniques:

For anaerobic bacteria, the susceptibility to ceftriaxone as MICs can be determined by a standardized agar test method3,4. The MIC values obtained should be interpreted according to the criteria provided in Table 5.

Table 5. Susceptibility Test Interpretive Criteria for Ceftriaxone

Susceptibility of staphylococci to ceftriaxone may be deduced from testing only penicillin and either cefoxitin or oxacillin.

a Susceptibility interpretive criteria for Enterobacteriaceae are based on a dose of 1 g IV q 24h. For isolates with intermediate susceptibility, use a dose of 2 g IV q 24h in patients with normal renal function.

b For Haemophilus influenzae , susceptibility interpretive criteria are based on a dose of 2 g IV every 24 hours in patients with normal renal function.

c The current absence of data on resistant isolates precludes defining any category other than ‘Susceptible’. If isolates yield MIC results other than susceptible, they should be submitted to a reference laboratory for additional testing.

d Disc diffusion interpretive criteria for ceftriaxone discs against Streptococcus pneumoniae are not available, however, isolates of pneumococci with oxacillin zone diameters of ≥20 mm are susceptible (MIC ≤ 0.06 mcg/mL) to penicillin and can be considered susceptible to ceftriaxone. Streptococcus pneumoniae isolates should not be reported as penicillin (ceftriaxone) resistant or intermediate based solely on an oxacillin zone diameter of ≤ 19 mm. The ceftriaxone MIC should be determined for those isolates with oxacillin zone diameters ≤ 19 mm.

Pathogen Minimum Inhibitory Concentrations (mcg/ml) Disk Diffusion Zone Diameters (mm)
(S) Susceptible (I) Intermediate (R) Resistant (S) Susceptible (I)Intermediate (R) Resistant
Enterobacteriaceaea ≤1 2 ≥4 ≥23 20 to 22 ≤19
Haemophilus influenzaeb , c ≤2 ≥26
Neisseria gonorrhoeaec ≤0.25 ≥35
Neisseria meningitidisc ≤0.12 ≥34
Streptococcus pneumoniaed meningitis isolates ≤0.5 1 ≥2
Streptococcus pneumoniaed non-meningitis isolates ≤1 2 ≥4
Streptococcus species beta-hemolytic groupc ≤0.5 ≥24
Viridans group streptococci ≤1 2 ≥4 ≥27 25 to 26 ≤24
Anaerobic bacteria (agar method) ≤1 2 ≥4

A report of Susceptible indicates that the antimicrobial drug is likely to inhibit growth of the pathogen if the antimicrobial drug reaches the concentration at the site of infection. A report of Intermediate indicates that the result should be considered equivocal, and if the microorganism is not fully susceptible to alternative, clinically feasible drugs, the test should be repeated. This category implies possible clinical applicability in body sites where the drug is physiologically concentrated or in situations where a high dosage of drug can be used. This category also provides a buffer zone that prevents small uncontrolled technical factors from causing major discrepancies in interpretation. A report of Resistant indicates that the antimicrobial drug is not likely to inhibit growth of the pathogen if the antimicrobial drug reaches the concentrations usually achievable at the infection site; other therapy should be selected.

Quality Control:

Standardized susceptibility test procedures require the use of laboratory controls to monitor and ensure the accuracy and precision of supplies and reagents used in the assay, and the techniques of the individual performing the test1,2,3,4. Standard ceftriaxone powder should provide the following range of MIC values noted in Table 6. For the diffusion technique using the 30 mcg disk, the criteria in Table 6 should be achieved.

Table 6. Acceptable Quality Control Ranges for Ceftriaxone
QC Strain Minimum Inhibitory Concentrations (mcg/mL) Disk Diffusion Zone diameters (mm)
Escherichia coli ATCC 25922 0.03 to 0.12 29 to 35
Staphylococcus aureus ATCC 25923 22 to 28
Staphylococcus aureus ATCC 29213 1 to 8
Haemophilus influenzae ATCC 49247 0.06 to 0.25 31 to 39
Neisseria gonorrhoeae ATCC 49226 0.004 to 0.015 39 to 51
Pseudomonas aeruginosa ATCC 27853 8 to 64 17 to 23
Streptococcus pneumoniae ATCC 49619 0.03 to 0.12 30 to 35
Bacteroides fragilis ATCC 25285 (agar method) 32 to 128
Bacteroides thetaiotaomicron ATCC 29741 (agar method) 64 to 256

All MedLibrary.org resources are included in as near-original form as possible, meaning that the information from the original provider has been rendered here with only typographical or stylistic modifications and not with any substantive alterations of content, meaning or intent.

This site is provided for educational and informational purposes only, in accordance with our Terms of Use, and is not intended as a substitute for the advice of a medical doctor, nurse, nurse practitioner or other qualified health professional.

Privacy Policy | Copyright © 2024. All Rights Reserved.