Disopyramide Phosphate ER (Page 3 of 4)

Carcinogenesis, Mutagenesis, Impairment of Fertility

Eighteen months of disopyramide phosphate administration to rats, at oral doses of up to 400 mg/kg/day (about 30 times the usual daily human dose of 600 mg/day, assuming a patient weight of at least 50 kg), revealed no evidence of carcinogenic potential. An evaluation of mutagenic potential by Ames test was negative. Disopyramide, as the phosphate, at doses up to 250 mg/kg/day, did not adversely affect fertility of rats.


Teratogenic Effects

Pregnancy Category C. Disopyramide phosphate was associated with decreased numbers of implantation sites and decreased growth and survival of pups when administered to pregnant rats at 250 mg/kg/day (20 or more times the usual daily human dose of 12 mg/kg, assuming a patient weight of at least 50 kg), a level at which weight gain and food consumption of dams were also reduced. Increased resorption rates were reported in rabbits at 60 mg/kg/day (5 or more times the usual daily human dose). Effects on implantation, pup growth, and survival were not evaluated in rabbits. There are no adequate and well-controlled studies in pregnant women. Disopyramide Phosphate Extended-release Capsules, USP should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

Nonteratogenic Effects

Disopyramide phosphate has been reported to stimulate contractions of the pregnant uterus. Disopyramide has been found in human fetal blood.

Labor and Delivery

It is not known whether the use of disopyramide phosphate during labor or delivery has immediate or delayed adverse effects on the fetus or whether it prolongs the duration of labor or increases the need for forceps delivery or other obstetric intervention.

Nursing Mothers

Studies in rats have shown that the concentration of disopyramide and its metabolites is between one and three times greater in milk than it is in plasma. Following oral administration, disopyramide has been detected in human milk at a concentration not exceeding that in plasma. Because of the potential for serious adverse reactions in nursing infants from disopyramide phosphate, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother.

Pediatric Use

Safety and effectiveness in pediatric patients have not been established (see Dosage and Administration).

Geriatric Use

Clinical studies of disopyramide phosphate immediate-release capsules and disopyramide phosphate extended-release capsules did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy.

Because of its anticholinergic activity, disopyramide phosphate should not be used in patients with glaucoma, urinary retention, or benign prostatic hypertrophy (medical conditions commonly associated with the elderly) unless adequate overriding measures are taken (see WARNINGS: Anticholingeric Activity). In the event of increased anticholingeric side effects, plasma levels of disopyramide should be monitored and the dose of the drug adjusted accordingly. A reduction of the dose by one third, from the recommended 600 mg/day to 400 mg/day, would be reasonable, without changing the dosing interval.

This drug is known to be substantially excreted by the kidney, and the risk of toxic reactions to this drug may be greater in patients with impaired renal function. Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and it may be useful to monitor renal function (see PRECAUTIONS: Renal Impairment and DOSAGE ANDADMINISTRATION).


The adverse reactions which were reported in disopyramide phosphate clinical trials encompass observations in 1,500 patients, including 90 patients studied for at least 4 years. The most serious adverse reactions are hypotension and congestive heart failure. The most common adverse reactions which are dose dependent are associated with the anticholinergic properties of the drug. These may be transitory but may be persistent or can be severe. Urinary retention is the most serious anticholinergic effect.

The following reactions were reported in 10% to 40% of patients:

Anticholinergic: dry mouth (32%), urinary hesitancy (14%), constipation (11%).

The following reactions were reported in 3% to 9% of patients:

Anticholinergic: blurred vision, dry nose/eyes/throat.
Genitourinary: urinary retention, urinary frequency and urgency.
Gastrointestinal: nausea, pain/bloating/gas.
General: dizziness, general fatigue/muscle weakness, headache, malaise, aches/pains.

The following reactions were reported in 1% to 3% of patients:

Genitourinary: impotence.
Cardiovascular: hypotension with or without congestive heart failure, increased congestive heart failure (see WARNINGS), cardiac conduction disturbances (see WARNINGS), edema/weight gain, shortness of breath, syncope, chest pain.
Gastrointestinal: anorexia, diarrhea, vomiting.
Dermatologic: generalized rash/dermatoses, itching.
Central nervous system: nervousness.
Other: hypokalemia, elevated cholesterol/triglycerides.

The following reactions were reported in less than 1%:

Depression, insomnia, dysuria, numbness/tingling, elevated liver enzymes, AV block, elevated BUN, elevated creatinine, decreased hemoglobin/hematocrit.

Hypoglycemia has been reported in association with disopyramide administration (see WARNINGS).

Infrequent occurrences of reversible cholestatic jaundice, fever, and respiratory difficulty have been reported in association with disopyramide administration as have rare instances of thrombocytopenia, reversible agranulocytosis and gynecomastia. Some cases of LE (lupus erythematosus) symptoms have been reported; most cases occurred in patients who had been switched to disopyramide from procainamide following the development of LE symptoms. Rarely, acute psychosis has been reported following disopyramide therapy, with prompt return to normal mental status when therapy was stopped. The physician should be aware of these possible reactions and should discontinue disopyramide phosphate therapy promptly if they occur.



Deliberate or accidental overdose of oral disopyramide may be followed by apnea, loss of consciousness, cardiac arrhythmias and loss of spontaneous respiration. Death has occurred following overdose.

Toxic plasma levels of disopyramide produce excessive widening of the QRS complex and Q-T interval, worsening of congestive heart failure, hypotension, varying kinds and degrees of conduction disturbance, bradycardia, and finally asystole. Obvious anticholinergic effects are also observed.

The approximate oral LD50 of disopyramide phosphate is 580 and 700 mg/kg for rats and mice, respectively.


Experience indicates that prompt and vigorous treatment of overdosage is necessary, even in the absence of symptoms. Such treatment may be lifesaving. No specific antidote for disopyramide phosphate has been identified. Treatment should be symptomatic and may include induction of emesis or gastric lavage, administration of a cathartic followed by activated charcoal by mouth or stomach tube, intravenous administration of isoproterenol and dopamine, insertion of an intra-aortic balloon for counterpulsation, and mechanically assisted ventilation. Hemodialysis or, preferably, hemoperfusion with charcoal may be employed to lower serum concentration of the drug.

The electrocardiogram should be monitored, and supportive therapy with cardiac glycosides and diuretics should be given as required.

If progressive AV block should develop, endocardial pacing should be implemented. In case of any impaired renal function, measures to increase the glomerular filtration rate may reduce the toxicity (disopyramide is excreted primarily by the kidney).

The anticholinergic effects can be reversed with neostigmine at the discretion of the physician.

Altering the urinary pH in humans does not affect the plasma half-life or the amount of disopyramide excreted in the urine.

All MedLibrary.org resources are included in as near-original form as possible, meaning that the information from the original provider has been rendered here with only typographical or stylistic modifications and not with any substantive alterations of content, meaning or intent.

This site is provided for educational and informational purposes only, in accordance with our Terms of Use, and is not intended as a substitute for the advice of a medical doctor, nurse, nurse practitioner or other qualified health professional.

Privacy Policy | Copyright © 2020. All Rights Reserved.