Kalydeco (Page 3 of 11)

6.2 Postmarketing Experience

The following adverse reactions have been identified during post approval use of KALYDECO. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

Immune System Disorders: anaphylaxis

7 DRUG INTERACTIONS

Potential for other drugs to affect ivacaftor

7.1 Inhibitors of CYP3A

Ivacaftor is a sensitive CYP3A substrate. Co-administration with ketoconazole, a strong CYP3A inhibitor, significantly increased ivacaftor exposure [measured as area under the curve (AUC)] by 8.5-fold. Based on simulations of these results, a reduction of the KALYDECO dose is recommended for patients 6 months and older taking concomitant strong CYP3A inhibitors, such as ketoconazole, itraconazole, posaconazole, voriconazole, telithromycin, and clarithromycin. KALYDECO is not recommended for patients less than 6 months of age taking strong CYP3A inhibitors [see Dosage and Administration (2.4) and Clinical Pharmacology (12.3)].

Co-administration with fluconazole, a moderate inhibitor of CYP3A, increased ivacaftor exposure by 3-fold. Therefore, a reduction of the KALYDECO dose is recommended for patients 6 months and older taking concomitant moderate CYP3A inhibitors, such as fluconazole and erythromycin. KALYDECO is not recommended for patients less than 6 months of age taking moderate CYP3A inhibitors [see Dosage and Administration (2.4) and Clinical Pharmacology (12.3)].

Co-administration of KALYDECO with grapefruit juice, which contains one or more components that moderately inhibit CYP3A, may increase exposure of ivacaftor. Therefore, avoid food or drink containing grapefruit during treatment with KALYDECO [see Clinical Pharmacology (12.3) ].

7.2 Inducers of CYP3A

Co-administration with rifampin, a strong CYP3A inducer, significantly decreased ivacaftor exposure (AUC) by approximately 9-fold. Therefore, co-administration with strong CYP3A inducers, such as rifampin, rifabutin, phenobarbital, carbamazepine, phenytoin, and St. John’s wort is not recommended [see Warnings and Precautions (5.3) and Clinical Pharmacology (12.3)].

7.3 Ciprofloxacin

Co-administration of KALYDECO with ciprofloxacin had no effect on the exposure of ivacaftor. Therefore, no dose adjustment is necessary during concomitant administration of KALYDECO with ciprofloxacin [see Clinical Pharmacology (12.3) ].

Potential for ivacaftor to affect other drugs

7.4 CYP2C9 Substrates

Ivacaftor may inhibit CYP2C9; therefore, monitoring of the international normalized ratio (INR) during co-administration of KALYDECO with warfarin is recommended. Other therapeutic products for which exposure may be increased by KALYDECO include glimepiride and glipizide; these therapeutic products should be used with caution [see Clinical Pharmacology (12.3)].

7.5 CYP3A and/or P-gp Substrates

Ivacaftor and its M1 metabolite have the potential to inhibit CYP3A and P-gp. Co-administration with oral midazolam, a sensitive CYP3A substrate, increased midazolam exposure 1.5-fold, consistent with weak inhibition of CYP3A by ivacaftor. Co-administration with digoxin, a sensitive P-gp substrate, increased digoxin exposure by 1.3-fold, consistent with weak inhibition of P-gp by ivacaftor. Administration of KALYDECO may increase systemic exposure of drugs that are substrates of CYP3A and/or P-gp, which may increase or prolong their therapeutic effect and adverse events. Therefore, caution and appropriate monitoring are recommended when co-administering KALYDECO with sensitive CYP3A and/or P-gp substrates, such as digoxin, cyclosporine, and tacrolimus [see Clinical Pharmacology (12.3) ].

8 USE IN SPECIFIC POPULATIONS

8.1 Pregnancy

Risk Summary

There are limited and incomplete human data from clinical trials and postmarketing reports on use of KALYDECO in pregnant women. In animal reproduction studies, oral administration of ivacaftor to pregnant rats and rabbits during organogenesis demonstrated no teratogenicity or adverse effects on fetal development at doses that produced maternal exposures up to approximately 5 (rats) and 11 (rabbits) times the exposure at the maximum recommended human dose (MRHD). No adverse developmental effects were observed after oral administration of ivacaftor to pregnant rats from organogenesis through lactation at doses that produced maternal exposures approximately 3 times the exposures at the MRHD, respectively (see Data).

The background risk of major birth defects and miscarriage for the indicated population is unknown. In the U.S. general population, the estimated background risk of major birth defects is 2% to 4% and miscarriage is 15% to 20% in clinically recognized pregnancies.

Data

Animal Data

In an embryo-fetal development study in pregnant rats dosed during the period of organogenesis from gestation days 7-17, ivacaftor was not teratogenic and did not affect fetal survival at exposures up to 5 times the MRHD (based on summed AUCs for ivacaftor and its metabolites at maternal oral doses up to 200 mg/kg/day). In an embryo-fetal development study in pregnant rabbits dosed during the period of organogenesis from gestation days 7-19, ivacaftor was not teratogenic and did not affect fetal development or survival at exposures up to 11 times the MRHD (on an ivacaftor AUC basis at maternal oral doses up to 100 mg/kg/day). In a pre- and post-natal development study in pregnant female rats dosed from gestation day 7 through lactation day 20, ivacaftor had no effects on delivery or growth and development of offspring at exposures up to 3 times the MRHD (based on summed AUCs for ivacaftor and its metabolites at maternal oral doses up to 100 mg/kg/day). Decreased fetal body weights were observed at a maternally toxic dose that produced exposures 5 times the MRHD (based on summed AUCs for ivacaftor and its metabolites at a maternal oral dose of 200 mg/kg/day). Placental transfer of ivacaftor was observed in pregnant rats and rabbits.

8.2 Lactation

Risk Summary

There is no information regarding the presence of ivacaftor in human milk, the effects on the breastfed infant, or the effects on milk production. Ivacaftor is excreted into the milk of lactating rats; however, due to species-specific differences in lactation physiology, animal lactation data may not reliably predict levels in human milk (see Data). The developmental and health benefits of breastfeeding should be considered along with the mother’s clinical need for KALYDECO, and any potential adverse effects on the breastfed child from KALYDECO or from the underlying maternal condition.

Data

Lacteal excretion of ivacaftor in rats was demonstrated following a single oral dose (100 mg/kg) of 14 C-ivacaftor administered 9 to 10 days postpartum to lactating mothers (dams). Exposure (AUC0-24h ) values for ivacaftor in milk were approximately 1.5 times higher than plasma levels.

8.4 Pediatric Use

The safety and effectiveness of KALYDECO for the treatment of CF have been established in pediatric patients 1 month to 17 years of age who have at least one mutation in the CFTR gene that is responsive to ivacaftor potentiation based on clinical and/or in vitro assay data [see Clinical Pharmacology (12.1) and Clinical Studies (14)].

The use of KALYDECO for this indication is supported by evidence from placebo-controlled clinical trials in the following pediatric patients with CF:

The effectiveness of KALYDECO in patients aged 2 to less than 6 years was extrapolated from patients 6 years of age and older with support from population pharmacokinetic analyses showing similar drug exposure levels in adults and pediatric patients 2 to less than 6 years of age [see Clinical Pharmacology (12.3)]. Safety of KALYDECO in this population was derived from a 24-week, open-label clinical trial in 34 patients ages 2 to less than 6 years (mean age 3 years) administered either 50 mg or 75 mg of ivacaftor granules twice daily (Trial 6). The type and frequency of adverse reactions in this trial were similar to those in patients 6 years and older. Transaminase elevations were more common in patients who had abnormal transaminases at baseline [see Warnings and Precautions (5.1) and Adverse Reactions (6.1)].

The effectiveness of KALYDECO in patients aged 1 month to less than 24 months was extrapolated from patients 6 years of age and older with support from population pharmacokinetic analyses showing that the exposure of ivacaftor in pediatric patients 1 month to less than 24 months of age is within the range of exposure in adults and pediatric patients 6 years of age and older [see Clinical Pharmacology (12.3)]. Safety of KALYDECO in this population was derived from a cohort of 7 patients aged 1 month to less than 4 months (mean age 1.9 months at baseline), a cohort of 6 patients aged 4 months to less than 6 months (mean age 4.5 months at baseline), a cohort of 11 patients aged 6 months to less than 12 months (mean age 9.0 months at baseline), and a cohort of 19 patients aged 12 months to less than 24 months (mean age 15.2 months at baseline) in a 24-week, open-label clinical trial, administered 5.8 mg, 11.4 mg, 17.1 mg, 22.8 mg, 25 mg, 50 mg, or 75 mg (11.4 mg, 17.1 mg, and 22.8 mg are not recommended dosages) of ivacaftor granules twice daily (Trial 8). The safety profile of patients in this trial was similar to that observed in patients 2 years and older.

The safety and effectiveness of KALYDECO in pediatric patients with CF younger than 1 month of age have not been established.

Juvenile Animal Toxicity Data

In a juvenile toxicology study in which ivacaftor was administered to rats from postnatal days 7 to 35, cataracts were observed at all dose levels, ranging from 0.1 to 0.8 times the MRHD (based on summed AUCs for ivacaftor and its metabolites at oral doses of 10-50 mg/kg/day). This finding has not been observed in older animals.

All MedLibrary.org resources are included in as near-original form as possible, meaning that the information from the original provider has been rendered here with only typographical or stylistic modifications and not with any substantive alterations of content, meaning or intent.

This site is provided for educational and informational purposes only, in accordance with our Terms of Use, and is not intended as a substitute for the advice of a medical doctor, nurse, nurse practitioner or other qualified health professional.

Privacy Policy | Copyright © 2024. All Rights Reserved.