Minolira Extended Release (Page 3 of 6)

7 DRUG INTERACTIONS

7.1 Anticoagulants

Because tetracyclines have been shown to depress plasma prothrombin activity, patients who are on anticoagulant therapy may require downward adjustment of their anticoagulant dosage.

7.2 Penicillin

Because bacteriostatic drugs may interfere with the bactericidal action of penicillin, to avoid giving tetracycline-class drugs in conjunction with penicillin.

7.3 Antacids and Iron Preparations

Absorption of tetracyclines is impaired by antacids containing aluminum, calcium or magnesium and iron-containing preparations.

7.4 Low Dose Oral Contraceptives

In a multi-center study to evaluate the effect of minocycline extended release tablets on low dose oral contraceptives, hormone levels over one menstrual cycle with and without minocycline extended release tablets 1 mg/kg once-daily were measured. Based on the results of this trial, minocycline-related changes in estradiol, progestinic hormone, FSH and LH plasma levels, of breakthrough bleeding, or of contraceptive failure, cannot be ruled out. To avoid contraceptive failure during treatment with minocycline, advise patients of reproductive potential to use a second form of contraception in addition to low-dose oral contraceptives.

7.5 Drug/Laboratory Test Interactions

False elevations of urinary catecholamine levels may occur due to interference with the fluorescence test.

8 USE IN SPECIFIC POPULATIONS

8.1 Pregnancy

Risk Summary

MINOLIRA, like tetracycline class drugs, may cause permanent discoloration of teeth and reversible inhibition of bone growth when administered during pregnancy [see Warnings and Precautions (5.1) and Use in Specific Populations (8.4)]. Post-marketing cases of minocycline use in pregnant women report congenital anomalies such as limb reductions. The limited data are not sufficient to inform a drug-associated risk for birth defects or miscarriage. In animal reproduction studies, minocycline induced skeletal malformations in fetuses when orally administered to pregnant rats and rabbits during the period of organogenesis at systemic exposure of approximately 3 times and 2 times, respectively, the systemic exposure to minocycline observed in patients administered MINOLIRA (see Data). If a patient becomes pregnant while taking this drug, advise the patient of the risk to the fetus and discontinue treatment.

The estimated background risk of major birth defects and miscarriage for the indicated population is unknown. All pregnancies have a background risk of birth defect, loss, or other adverse outcomes. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2-4% and 15-20%, respectively.

Data

Human Data

The use of tetracycline during tooth development (second and third trimesters of pregnancy) may cause permanent discoloration of deciduous teeth. This adverse reaction is more common during long-term use of the drug but has been observed following repeated short-term courses.

Animal Data

Results of animal studies indicate that tetracyclines cross the placenta, are found in fetal tissues, and can cause retardation of skeletal development of the developing fetus. [see Warnings and Precautions (5.1)].

Minocycline induced skeletal malformations (bent limb bones) in fetuses when administered to pregnant rats and rabbits during the period of organogenesis at doses of 30 mg/kg/day and 100 mg/kg/day, respectively, (resulting in approximately 3 times and 2 times, respectively, the systemic exposure to minocycline observed in patients administered MINOLIRA). Reduced mean fetal body weight was observed when minocycline was administered to pregnant rats during the period of organogenesis at a dose of 10 mg/kg/day (which resulted in approximately the same level of systemic exposure to minocycline as that observed in patients administered MINOLIRA).

Minocycline was assessed for effects on peri- and post-natal development of rats in a study that involved oral administration to pregnant rats during the period of organogenesis through lactation , at doses of 5, 10, or 50 mg/kg/day. In this study, body weight gain was significantly reduced in pregnant females that received 50 mg/kg/day (resulting in approximately 2.5 times the systemic exposure to minocycline observed in patients administered MINOLIRA). No effects of treatment on the duration of the gestation period or the number of live pups born per litter were observed. Gross external anomalies observed in F1 pups (offspring of animals that received minocycline) included reduced body size, improperly rotated forelimbs, and reduced size of extremites. No effects were observed on the physical development, behavior, learning ability, or reproduction of F1 pups, and there was no effect on gross appearance of F2 pups (offspring of F1 animals).

8.2 Lactation

Risk Summary

Tetracycline-class drugs including minocycline are present in breast milk. It is not known whether minocycline has an effect on the breastfed infant or on milk production. Because of the potential for serious adverse effects on bone and tooth development in breastfed infants from the tetracycline-class drugs, advise a woman that breastfeeding is not recommended with MINOLIRA therapy [see Warnings and Precautions (5.1)].

8.3 Females and Males of Reproductive Potential

Contraception

MINOLIRA may reduce the effectiveness of low-dose oral contraceptives. Patients of reproductive potential should not rely on low-dose oral contraceptives as an effective contraceptive method, and should use an additional method of contraception during treatment with MINOLIRA [see Drug Interactions (7.4)].

Infertility

Avoid using MINOLIRA in males who are attempting to conceive a child. Limited human studies suggest that minocycline may have a deleterious effect on spermatogenesis. In a fertility study in rats, minocycline adversely affected spermatogenesis when orally administered to male rats at doses resulting in approximately 15 to 40 times the level of systemic exposure to minocycline observed in patients administered MINOLIRA [see Nonclinical Toxicology (13.1)].

8.4 Pediatric Use

The safety and effectiveness of MINOLIRA have been established in pediatric patients 12 years of age and older for the treatment of inflammatory lesions of non-nodular moderate to severe acne vulgaris [see Pharmacokinetics (12.3) and Clinical Studies (14)]. Tooth discoloration and inhibition of bone growth have been observed in pediatric patients [see Warnings and Precautions (5.2, 5.3)]. The safety and effectiveness of MINOLIRA have not been established in pediatric patients less than 12 years of age.

8.5 Geriatric Use

Clinical studies of MINOLIRA did not include sufficient numbers of subjects aged 65 years and over to determine whether they respond differently from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients.

In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and concomitant disease or other drug therapy.

10 OVERDOSAGE

In case of over dosage, discontinue medication, treat symptomatically and institute supportive measures. Minocycline is not removed in significant quantities by hemodialysis or peritoneal dialysis.

11 DESCRIPTION

Minocycline hydrochloride, a semi synthetic derivative of tetracycline, is [4S (4α,4aα,5aα,12aα)]-4,7-Bis(dimethylamino)-1,4,4a,5,5a,6,11,12a-octahydro-3,10,12,12a tetrahydroxy-1,11-dioxo-2-naphthacenecarboxamide mono hydrochloride. The structural formula is representated below:

Chemical Structure
(click image for full-size original)

C23 H27 N3 O7 ∙HCl M. W. 493.95

MINOLIRA (minocycline hydrochloride) extended-release tablets for oral administration contain 105 mg or 135 mg of minocycline, equivalent to 113.4 mg or 145.8 mg of minocycline hydrochloride, respectively. MINOLIRA extended-release tablets, 105 mg and 135 mg, contain 25% of minocycline as immediate release beads and 75% of minocycline as extended release beads.

In addition, 105 mg and 135 mg tablets contain the following inactive ingredients: ethyl cellulose NF, hypromellose USP, isopropyl alcohol USP, microcrystalline cellulose NF, polytheylene glycol 400 NF, purified water USP, silicified microcrystalline cellulose NF, sodium stearyl fumarate NF, talc USP, triethyl citrate NF.

Both 105 mg and 135 mg tablets also contain Opadry clear which contains hydroxyl propyl cellulose NF and hypromellose USP.

All MedLibrary.org resources are included in as near-original form as possible, meaning that the information from the original provider has been rendered here with only typographical or stylistic modifications and not with any substantive alterations of content, meaning or intent.

This site is provided for educational and informational purposes only, in accordance with our Terms of Use, and is not intended as a substitute for the advice of a medical doctor, nurse, nurse practitioner or other qualified health professional.

Privacy Policy | Copyright © 2023. All Rights Reserved.