Nicardipine Hydrochloride (Page 3 of 5)

8.4 Pediatric Use

Safety and efficacy in patients under the age of 18 have not been established.

8.5 Geriatric Use

The steady-state pharmacokinetics of nicardipine are similar in elderly hypertensive patients (greater than 65 years) and young healthy adults.

Clinical studies of nicardipine did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects.

Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal or cardiac function, and concomitant disease of other drug therapy.

10 OVERDOSAGE

Several overdosages with orally administered nicardipine have been reported. One adult patient allegedly ingested 600 mg of nicardipine immediate release capsules, and another patient, 2160 mg of the sustained release formulation of nicardipine. Symptoms included marked hypotension, bradycardia, palpitations, flushing, drowsiness, confusion and slurred speech. All symptoms resolved without sequelae. An overdosage occurred in a one-year-old child who ingested half of the powder in a 30 mg nicardipine standard capsule. The child remained asymptomatic.

Based on results obtained in laboratory animals, lethal overdose may cause systemic hypotension, bradycardia (following initial tachycardia) and progressive atrioventricular conduction block. Reversible hepatic function abnormalities and sporadic focal hepatic necrosis were noted in some animal species receiving very large doses of nicardipine.

For treatment of overdosage, standard measures including monitoring of cardiac and respiratory functions should be implemented. The patient should be positioned to avoid cerebral anoxia. Frequent blood pressure determinations are essential. Vasopressors are clinically indicated for patients exhibiting profound hypotension. Intravenous calcium gluconate may help reverse the effects of calcium entry blockade.

11 DESCRIPTION

Nicardipine hydrochloride is a calcium ion influx inhibitor (slow channel blocker or calcium channel blocker). Nicardipine hydrochloride for intravenous administration contains 2.5 mg/mL of nicardipine hydrochloride. Nicardipine hydrochloride is a dihydropyridine derivative with IUPAC (International Union of Pure and Applied Chemistry) chemical name (±)-2-(benzyl-methyl amino) ethyl methyl 1,4-dihydro-2, 6-dimethyl-4- (m-nitrophenyl)-3,5-pyridinedicarboxylate monohydrochloride and has the following structure:

Chemical Structure
(click image for full-size original)

Nicardipine hydrochloride is a yellow to pale yellow, odorless, crystalline powder that has a melting point range of 165-170ºC. It is soluble in methanol, sparingly soluble in ethanol, slightly soluble in acetone, chloroform and water. It has a molecular weight of 515.99.

Nicardipine hydrochloride injection is available as a sterile, non-pyrogenic, clear, yellow solution in 10 mL vials for intravenous infusion after dilution. Each mL contains 2.5 mg nicardipine hydrochloride, 0.305 mg benzoic acid, USP and 7.5 mg sodium chloride, USP, in Water for Injection, USP. Sodium hydroxide (q.s.) may have been added to adjust pH to 3.2 to 4.2.

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action

Nicardipine inhibits the transmembrane influx of calcium ions into cardiac muscle and smooth muscle without changing serum calcium concentrations. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. The effects of nicardipine are more selective to vascular smooth muscle than cardiac muscle. In animal models, nicardipine produced relaxation of coronary vascular smooth muscle at drug levels which cause little or no negative inotropic effect.

12.2 Pharmacodynamics

Hemodynamics

Nicardipine produces significant decreases in systemic vascular resistance. In a study of intra-arterially administered nicardipine, the degree of vasodilation and the resultant decrease in blood pressure were more prominent in hypertensive patients than in normotensive volunteers. Administration of nicardipine to normotensive volunteers at dosages of 0.25 mg/hr to 3 mg/hr for eight hours produced changes of less than 5 mmHg in systolic blood pressure and less than 3 mmHg in diastolic blood pressure.

An increase in heart rate is a normal response to vasodilation and decrease in blood pressure; in some patients these increases in heart rate may be pronounced. In placebo-controlled trials, the mean increases in heart rate were 7 ± 1 bpm in postoperative patients and 8 ± 1 bpm in patients with severe hypertension at the end of the maintenance period.

Hemodynamic studies following intravenous dosing in patients with coronary artery disease and normal or moderately abnormal left ventricular function have shown significant increases in ejection fraction and cardiac output with no significant change, or a small decrease, in left ventricular end-diastolic pressure (LVEDP). There is evidence that nicardipine increases blood flow. Coronary dilatation induced by nicardipine improves perfusion and aerobic metabolism in areas with chronic ischemia, resulting in reduced lactate production and augmented oxygen consumption. In patients with coronary artery disease, nicardipine, administered after beta-blockade, significantly improved systolic and diastolic left ventricular function.

In congestive heart failure patients with impaired left ventricular function, nicardipine increased cardiac output both at rest and during exercise. Decreases in left ventricular end-diastolic pressure were also observed. However, in some patients with severe left ventricular dysfunction, it may have a negative inotropic effect and could lead to worsened failure.

“Coronary steal” has not been observed during treatment with nicardipine (Coronary steal is the detrimental redistribution of coronary blood flow in patients with coronary artery disease from underperfused areas toward better perfused areas.) Nicardipine has been shown to improve systolic shortening in both normal and hypokinetic segments of myocardial muscle. Radionuclide angiography has confirmed that wall motion remained improved during increased oxygen demand. (Occasional patients have developed increased angina upon receiving nicardipine capsules. Whether this represents coronary steal in these patients, or is the result of increased heart rate and decreased diastolic pressure, is not clear.)

In patients with coronary artery disease, nicardipine improves left ventricular diastolic distensibility during the early filling phase, probably due to a faster rate of myocardial relaxation in previously underperfused areas. There is little or no effect on normal myocardium, suggesting the improvement is mainly by indirect mechanisms such as afterload reduction and reduced ischemia. Nicardipine has no negative effect on myocardial relaxation at therapeutic doses. The clinical benefits of these properties have not yet been demonstrated.

Electrophysiologic Effects

In general, no detrimental effects on the cardiac conduction system have been seen with nicardipine. During acute electrophysiologic studies, it increased heart rate and prolonged the corrected QT interval to a minor degree. It did not affect sinus node recovery or SA conduction times. The PA, AH, and HV intervals* or the functional and effective refractory periods of the atrium were not prolonged. The relative and effective refractory periods of the His-Purkinje system were slightly shortened.

*PA = conduction time from high to low right atrium; AH = conduction time from low right atrium to His bundle deflection, or AV nodal conduction time; HV = conduction time through the His bundle and the bundle branch-Purkinje system.

Hepatic Function

Because nicardipine is extensively metabolized by the liver, plasma concentrations are influenced by changes in hepatic function. In a clinical study with nicardipine capsules in patients with severe liver disease, plasma concentrations were elevated and the half-life was prolonged [see Warnings and Precautions (5.5)]. Similar results were obtained in patients with hepatic disease when nicardipine hydrochloride was administered for 24 hours at 0.6 mg/hr.

Renal Function

When nicardipine was given to mild-to-moderate hypertensive patients with moderate degrees of renal impairment, significant reduction in glomerular filtration rate (GFR) and effective renal plasma flow (RPF) were observed. No significant differences in liver blood flow were observed in these patients. A significantly lower systemic clearance and higher area under the curve (AUC) were observed.

When nicardipine capsules (20 or 30 mg TID) were given to hypertensive patients with impaired renal function, mean plasma concentrations, AUC, and Cmax were approximately two-fold higher than in healthy controls. There was a transient increase in electrolyte excretion, including sodium [see Warnings and Precautions (5.6)].

Acute bolus administration of nicardipine hydrochloride injection (2.5 mg) in healthy volunteers decreased mean arterial pressure and renal vascular resistance; glomerular filtration rate (GFR), renal plasma flow (RPF), and the filtration fraction were unchanged. In healthy patients undergoing abdominal surgery, nicardipine hydrochloride injection (10 mg over 20 minutes) increased GFR with no change in RPF when compared with placebo. In hypertensive type ll diabetic patients with nephropathy, nicardipine capsules (20 mg TID) did not change RPF and GFR, but reduced renal vascular resistance.

Pulmonary Function

In two well-controlled studies of patients with obstructive airway disease treated with nicardipine capsules, no evidence of increased bronchospasm was seen. In one of the studies, nicardipine capsules improved forced expiratory volume 1 second (FEV1 ) and forced vital capacity (FVC) in comparison with metoprolol. Adverse reactions reported in a limited number of patients with asthma, reactive airway disease, or obstructive airway disease were similar to reactions in other patients treated with nicardipine capsules.

All MedLibrary.org resources are included in as near-original form as possible, meaning that the information from the original provider has been rendered here with only typographical or stylistic modifications and not with any substantive alterations of content, meaning or intent.

This site is provided for educational and informational purposes only, in accordance with our Terms of Use, and is not intended as a substitute for the advice of a medical doctor, nurse, nurse practitioner or other qualified health professional.

Privacy Policy | Copyright © 2023. All Rights Reserved.