OXCARBAZEPINE- oxcarbazepine tablet, film coated
Aidarex Pharmaceuticals LLC


Oxcarbazepine is an antiepileptic drug available as 150 mg, 300 mg and 600 mg film-coated tablets for oral administration. Oxcarbazepine is 10,11-Dihydro-10-oxo-5H -dibenz[b,f ]azepine-5-carboxamide, and its structural formula is


Oxcarbazepine is a white to faintly orange crystalline powder. It is slightly soluble in chloroform, dichloromethane, acetone, and methanol and practically insoluble in ethanol, ether and water. Its molecular weight is 252.27.

Oxcarbazepine film-coated tablets contain the following inactive ingredients: colloidal silicon dioxide, povidone, polyethylene glycol, croscarmellose sodium, microcrystalline cellulose, crospovidone, sodium stearyl fumarate, hypromellose, polysorbate 80, titanium dioxide and yellow iron oxide.


Mechanism of Action

The pharmacological activity of oxcarbazepine is primarily exerted through the 10-monohydroxy metabolite (MHD) of oxcarbazepine (see Metabolism and Excretion subsection). The precise mechanism by which oxcarbazepine and MHD exert their antiseizure effect is unknown; however, in vitro electrophysiological studies indicate that they produce blockade of voltage-sensitive sodium channels, resulting in stabilization of hyperexcited neural membranes, inhibition of repetitive neuronal firing, and diminution of propagation of synaptic impulses. These actions are thought to be important in the prevention of seizure spread in the intact brain. In addition, increased potassium conductance and modulation of high-voltage activated calcium channels may contribute to the anticonvulsant effects of the drug. No significant interactions of oxcarbazepine or MHD with brain neurotransmitter or modulator receptor sites have been demonstrated.


Oxcarbazepine and its active metabolite (MHD) exhibit anticonvulsant properties in animal seizure models. They protected rodents against electrically induced tonic extension seizures and, to a lesser degree, chemically induced clonic seizures, and abolished or reduced the frequency of chronically recurring focal seizures in Rhesus monkeys with aluminum implants. No development of tolerance (i.e., attenuation of anticonvulsive activity) was observed in the maximal electroshock test when mice and rats were treated daily for five days and four weeks, respectively, with oxcarbazepine or MHD.


Following oral administration of oxcarbazepine tablets, oxcarbazepine is completely absorbed and extensively metabolized to its pharmacologically active 10-monohydroxy metabolite (MHD). The half-life of the parent is about two hours, while the half-life of MHD is about nine hours, so that MHD is responsible for most antiepileptic activity.

Based on MHD concentrations, oxcarbazepine tablets and suspension were shown to have similar bioavailability.

After single-dose administration of oxcarbazepine tablets to healthy male volunteers under fasted conditions, the median tmax was 4.5 (range 3 to 13) hours.

In a mass balance study in people, only 2% of total radioactivity in plasma was due to unchanged oxcarbazepine, with approximately 70% present as MHD, and the remainder attributable to minor metabolites.

Effect of Food: Food has no effect on the rate and extent of absorption of oxcarbazepine from oxcarbazepine tablets. Therefore, oxcarbazepine tablets can be taken with or without food.

Steady-state plasma concentrations of MHD are reached within 2 to 3 days in patients when oxcarbazepine is given twice a day. At steady-state the pharmacokinetics of MHD are linear and show dose proportionality over the dose range of 300 to 2400 mg/day.


The apparent volume of distribution of MHD is 49L.

Approximately 40% of MHD is bound to serum proteins, predominantly to albumin. Binding is independent of the serum concentration within the therapeutically relevant range. Oxcarbazepine and MHD do not bind to alpha-1-acid glycoprotein.

Metabolism and Excretion

Oxcarbazepine is rapidly reduced by cytosolic enzymes in the liver to its 10-monohydroxy metabolite, MHD, which is primarily responsible for the pharmacological effect of oxcarbazepine. MHD is metabolized further by conjugation with glucuronic acid. Minor amounts (4% of the dose) are oxidized to the pharmacologically inactive 10,11-dihydroxy metabolite (DHD).

Oxcarbazepine is cleared from the body mostly in the form of metabolites which are predominantly excreted by the kidneys. More than 95% of the dose appears in the urine, with less than 1% as unchanged oxcarbazepine. Fecal excretion accounts for less than 4% of the administered dose. Approximately 80% of the dose is excreted in the urine either as glucuronides of MHD (49%) or as unchanged MHD (27%); the inactive DHD accounts for approximately 3% and conjugates of MHD and oxcarbazepine account for 13% of the dose.

Special Populations

Hepatic Impairment

The pharmacokinetics and metabolism of oxcarbazepine and MHD were evaluated in healthy volunteers and hepatically-impaired subjects after a single 900 mg oral dose. Mild-to-moderate hepatic impairment did not affect the pharmacokinetics of oxcarbazepine and MHD. No dose adjustment for oxcarbazepine is recommended in patients with mild-to-moderate hepatic impairment. The pharmacokinetics of oxcarbazepine and MHD have not been evaluated in severe hepatic impairment and, therefore, caution should be exercised when dosing severely impaired patients.

Renal Impairment

There is a linear correlation between creatinine clearance and the renal clearance of MHD. When oxcarbazepine is administered as a single 300 mg dose in renally-impaired patients (creatinine clearance < 30 mL/min), the elimination half-life of MHD is prolonged to 19 hours, with a two-fold increase in AUC. Dose adjustment for oxcarbazepine is recommended in these patients (see PRECAUTIONS and DOSAGE AND ADMINISTRATION sections).

Pediatric Use

Weight-adjusted MHD clearance decreases as age and weight increases, approaching that of adults. The mean weight-adjusted clearance in children 2 years to <4 years of age is approximately 80% higher on average than that of adults. Therefore, MHD exposure in these children is expected to be about one-half that of adults when treated with a similar weight-adjusted dose. The mean weight-adjusted clearance in children 4 to 12 years of age is approximately 40% higher on average than that of adults. Therefore, MHD exposure in these children is expected to be about three-quarters that of adults when treated with a similar weight-adjusted dose. As weight increases, for patients 13 years of age and above, the weight-adjusted MHD clearance is expected to reach that of adults.

Geriatric Use

Following administration of single (300 mg) and multiple (600 mg/day) doses of oxcarbazepine to elderly volunteers (60 to 82 years of age), the maximum plasma concentrations and AUC values of MHD were 30% to 60% higher than in younger volunteers (18 to 32 years of age). Comparisons of creatinine clearance in young and elderly volunteers indicate that the difference was due to age-related reductions in creatinine clearance.


No gender-related pharmacokinetic differences have been observed in children, adults, or the elderly.


No specific studies have been conducted to assess what effect, if any, race may have on the disposition of oxcarbazepine.


The effectiveness of oxcarbazepine as adjunctive and monotherapy for partial seizures in adults, and as adjunctive therapy in children aged 2 to 16 years was established in seven multicenter, randomized, controlled trials.

The effectiveness of oxcarbazepine as monotherapy for partial seizures in children aged 4 to 16 years was determined from data obtained in the studies described, as well as by pharmacokinetic/pharmacodynamic considerations.

All MedLibrary.org resources are included in as near-original form as possible, meaning that the information from the original provider has been rendered here with only typographical or stylistic modifications and not with any substantive alterations of content, meaning or intent.

This site is provided for educational and informational purposes only, in accordance with our Terms of Use, and is not intended as a substitute for the advice of a medical doctor, nurse, nurse practitioner or other qualified health professional.

Privacy Policy | Copyright © 2023. All Rights Reserved.