Pantoprazole Sodium Delayed-Release

PANTOPRAZOLE SODIUM DELAYED-RELEASE- pantoprazole sodium tablet, delayed release
Contract Pharmacy Services-PA

Rx only

DESCRIPTION

The active ingredient in pantoprazole sodium delayed-release tablets is a substituted benzimidazole, sodium 5-(difluoromethoxy)-2-[[(3,4-dimethoxy-2-pyridinyl)methyl] sulfinyl]-1H-benzimidazole sesquihydrate, a compound that inhibits gastric acid secretion. Its empirical formula is C16 H14 F2 N3 NaO4 S x 1.5 H2 O, with a molecular weight of 432.4. The structural formula is:

Chemical Structure
(click image for full-size original)

Pantoprazole sodium sesquihydrate is a white to off-white crystalline powder and is racemic. Pantoprazole has weakly basic and acidic properties. Pantoprazole sodium sesquihydrate is freely soluble in water, very slightly soluble in phosphate buffer at pH 7.4, and practically insoluble in n‑hexane.

The stability of the compound in aqueous solution is pH-dependent. The rate of degradation increases with decreasing pH. At ambient temperature, the degradation half-life is approximately 2.8 hours at pH 5.0 and approximately 220 hours at pH 7.8.

Pantoprazole sodium is supplied as a delayed-release tablet for oral administration, available in 2 strengths. Each delayed-release tablet contains 45.1 mg or 22.6 mg of pantoprazole sodium sesquihydrate (equivalent to 40 mg or 20 mg pantoprazole, respectively) with the following inactive ingredients: calcium stearate, crospovidone, hypromellose, iron oxide, mannitol, methacrylic acid copolymer, polysorbate 80, povidone, propylene glycol, sodium carbonate, sodium lauryl sulfate, titanium dioxide, and triethyl citrate. Pantoprazole Sodium Delayed‑Release tablets (40 mg and 20 mg) complies with USP dissolution test 2.

CLINICAL PHARMACOLOGY

Pharmacokinetics

Pantoprazole sodium is prepared as an enteric-coated tablet so that absorption of pantoprazole begins only after the tablet leaves the stomach. Peak serum concentration (Cmax ) and area under the serum concentration time curve (AUC) increase in a manner proportional to oral and intravenous doses from 10 mg to 80 mg. Pantoprazole does not accumulate and its pharmacokinetics are unaltered with multiple daily dosing. Following oral or intravenous administration, the serum concentration of pantoprazole declines biexponentially with a terminal elimination half-life of approximately one hour. In extensive metabolizers (see CLINICAL PHARMACOLOGY, Pharmacokinetics, Metabolism) with normal liver function receiving an oral dose of the enteric-coated 40 mg pantoprazole tablet, the peak concentration (Cmax ) is 2.5 μg/mL, the time to reach the peak concentration (tmax ) is 2.5 h and the total area under the plasma concentration versus time curve (AUC) is 4.8 μg·hr/mL. When pantoprazole is given with food, its tmax is highly variable and may increase significantly. Following intravenous administration of pantoprazole to extensive metabolizers, its total clearance is 7.6-14.0 L/h and its apparent volume of distribution is 11.0-23.6 L.

Absorption

The absorption of pantoprazole is rapid, with a Cmax of 2.5 μg/mL that occurs approximately 2.5 hours after administration of a single or multiple oral 40-mg doses of pantoprazole sodium delayed-release tablets. Pantoprazole is well absorbed; it undergoes little first-pass metabolism resulting in an absolute bioavailability of approximately 77%. Pantoprazole absorption is not affected by concomitant administration of antacids. Administration of pantoprazole with food may delay its absorption up to 2 hours or longer; however, the Cmax and the extent of pantoprazole absorption (AUC) are not altered. Thus, pantoprazole may be taken without regard to timing of meals.

Distribution

The apparent volume of distribution of pantoprazole is approximately 11.0-23.6 L, distributing mainly in extracellular fluid. The serum protein binding of pantoprazole is about 98%, primarily to albumin.

Metabolism

Pantoprazole is extensively metabolized in the liver through the cytochrome P450 (CYP) system. Pantoprazole metabolism is independent of the route of administration (intravenous or oral). The main metabolic pathway is demethylation, by CYP2C19, with subsequent sulfation; other metabolic pathways include oxidation by CYP3A4. There is no evidence that any of the pantoprazole metabolites have significant pharmacologic activity. CYP2C19 displays a known genetic polymorphism due to its deficiency in some sub-populations (eg, 3% of Caucasians and African-Americans and 17%-23% of Asians). Although these sub-populations of slow pantoprazole metabolizers have elimination half-life values of 3.5 to 10.0 hours, they still have minimal accumulation (≤ 23%) with once daily dosing.

Elimination

After a single oral or intravenous dose of 14 C-labeled pantoprazole to healthy, normal metabolizer volunteers, approximately 71% of the dose was excreted in the urine with 18% excreted in the feces through biliary excretion. There was no renal excretion of unchanged pantoprazole.

Special Populations

Geriatric

Only slight to moderate increases in pantoprazole AUC (43%) and Cmax (26%) were found in elderly volunteers (64 to 76 years of age) after repeated oral administration, compared with younger subjects. No dosage adjustment is recommended based on age.

Pediatric

The pharmacokinetics of pantoprazole have not been investigated in patients < 18 years of age.

Gender

There is a modest increase in pantoprazole AUC and Cmax in women compared to men. However, weight-normalized clearance values are similar in women and men. No dosage adjustment is needed based on gender (see PRECAUTIONS, Use in Women).

Renal Impairment

In patients with severe renal impairment, pharmacokinetic parameters for pantoprazole were similar to those of healthy subjects. No dosage adjustment is necessary in patients with renal impairment or in patients undergoing hemodialysis.

Hepatic Impairment

In patients with mild to severe hepatic impairment, maximum pantoprazole concentrations increased only slightly (1.5-fold) relative to healthy subjects. Although serum half-life values increased to 7-9 hours and AUC values increased by 5- to 7-fold in hepatic-impaired patients, these increases were no greater than those observed in slow CYP2C19 metabolizers, where no dosage frequency adjustment is warranted. These pharmacokinetic changes in hepatic-impaired patients result in minimal drug accumulation following once daily multiple-dose administration. No dosage adjustment is needed in patients with mild to severe hepatic impairment. Doses higher than 40 mg/day have not been studied in hepatically-impaired patients.

All MedLibrary.org resources are included in as near-original form as possible, meaning that the information from the original provider has been rendered here with only typographical or stylistic modifications and not with any substantive alterations of content, meaning or intent.

This site is provided for educational and informational purposes only, in accordance with our Terms of Use, and is not intended as a substitute for the advice of a medical doctor, nurse, nurse practitioner or other qualified health professional.

Privacy Policy | Copyright © 2023. All Rights Reserved.