PENICILLIN G POTASSIUM

PENICILLIN G POTASSIUM- penicillin g potassium injection, solution
Baxter Healthcare Corporation

To reduce the development of drug-resistant bacteria and maintain the effectiveness of Penicillin G Potassium Injection, USP and other antibacterial drugs, Penicillin G Potassium Injection, USP should be used only to treat or prevent infections that are proven or strongly suspected to be caused by bacteria.

DESCRIPTION

Penicillin G Potassium, USP is a natural penicillin. It is chemically designated 4-Thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid,3,3-dimethyl-7-oxo-6-[(phenylacetyl)amino]-, monopotassium salt, [2S -(2α, 5α, 6β)]. It is crystalline. It is freely soluble in water, in isotonic sodium chloride solution and in dextrose solutions. The structural formula is as shown below.

Penicillin G Potassium Injection USP Structural Formula
(click image for full-size original)

Penicillin G Potassium Injection, USP (equivalent to 1, 2, or 3 million units of penicillin G) is a 50 mL premixed, iso-osmotic, sterile, nonpyrogenic, frozen solution for intravenous administration. Dextrose, USP has been added to the above dosages to adjust osmolality (approximately 2 g, 1.2 g, and 350 mg as dextrose hydrous, respectively). Sodium Citrate, USP has been added as a buffer (0.10 g, 0.20 g and 0.30 g as sodium citrate dihydrate, respectively). The pH has been adjusted with hydrochloric acid and may have been adjusted with sodium hydroxide. The pH is 6.5 (5.5 to 8.0). The solution is contained in a single dose GALAXY container (PL 2040 Plastic) and is intended for intravenous use after thawing to room temperature.

This GALAXY container is fabricated from a specially designed multilayer plastic (PL 2040). Solutions are in contact with the polyethylene layer of this container and can leach out certain chemical components of the plastic in very small amounts within the expiration period. The suitability of the plastic has been confirmed in tests in animals according to the USP biological tests for plastic containers as well as by tissue culture toxicity studies.

CLINICAL PHARMACOLOGY

After an intravenous infusion of penicillin G, peak serum concentrations are attained immediately after completion of the infusion. In a study of ten patients administered a single 5 million unit dose of penicillin G intravenously over 3-5 minutes, the mean serum concentrations were 400 mcg/mL, 273 mcg/mL and 3.0 mcg/mL at 5-6 minutes, 10 minutes and 4 hours after completion of the injection, respectively. In a separate study, five healthy adults were administered one million units of penicillin G intravenously, either as a bolus over 4 minutes or as an infusion over 60 minutes. The mean serum concentration eight minutes after completion of the bolus was 45 mcg/mL and eight minutes after completion of the infusion was 14.4 mcg/mL. The mean β-phase serum half-life of penicillin G administered by the intravenous route in ten patients with normal renal function was 42 minutes, with a range of 31-50 minutes.

The clearance of penicillin G in normal individuals is predominantly via the kidney. The renal clearance, which is extremely rapid, is the result of glomerular filtration and active tubular transport, with the latter route predominating. Urinary recovery is reported to be 58-85% of the administered dose. Renal clearance of penicillin is delayed in premature infants, neonates and in the elderly due to decreased renal function. The serum half-life of penicillin G correlates inversely with age and clearance of creatinine and ranges from 3.2 hours in infants 0 to 6 days of age to 1.4 hours in infants 14 days of age or older.

Nonrenal clearance includes hepatic metabolism and, to a lesser extent, biliary excretion. The latter routes become more important with renal impairment.

Probenecid blocks the renal tubular secretion of penicillin. Therefore, the concurrent administration of probenecid prolongs the elimination of penicillin G and, consequently, increases the serum concentrations.

Penicillin G is distributed to most areas of the body including lung, liver, kidney, muscle, bone and placenta. In the presence of inflammation, levels of penicillin in abscesses, middle ear, pleural, peritoneal and synovial fluids are sufficient to inhibit most susceptible bacteria. Penetration into the eye, brain, cerebrospinal fluid (CSF) or prostate is poor in the absence of inflammation. With inflamed meninges, the penetration of penicillin G into the CSF improves, such that the CSF/serum ratio is 2-6%. Inflammation also enhances its penetration into the pericardial fluid. Penicillin G is actively secreted into the bile resulting in levels at least 10 times those achieved simultaneously in serum. Penicillin G penetrates poorly into human polymorphonuclear leukocytes.

In the presence of impaired renal function, the β-phase serum half-life of penicillin G is prolonged. β-phase serum half-lives of one to two hours were observed in azotemic patients with serum creatinine concentrations <3 mg/100 mL and ranged as high as 20 hours in anuric patients. A linear relationship, including the lowest range of renal function, is found between the serum elimination rate constant and renal function as measured by creatinine clearance.

In patients with altered renal function, the presence of hepatic insufficiency further alters the elimination of penicillin G. In one study, the serum half-lives in two anuric patients (excreting <400 mL urine/day) were 7.2 and 10.1 hours. A totally anuric patient with terminal hepatic cirrhosis had a penicillin half-life of 30.5 hours, while another patient with anuria and liver disease had a serum half-life of 16.4 hours. The dosage of penicillin G should be reduced in patients with severe renal impairment, with additional modifications when hepatic disease accompanies the renal impairment. Hemodialysis has been shown to reduce penicillin G serum levels.

Microbiology

Penicillin G is bactericidal against penicillin-susceptible microorganisms during the stage of active multiplication. It acts by inhibiting biosynthesis of cell-wall mucopeptide. It is not active against the penicillinase-producing bacteria, which include many strains of staphylococci. Penicillin G is highly active in vitro against staphylococci (except penicillinase-producing strains), streptococci (groups A, B, C, G, H, L and M), pneumococci and Neisseria meningitidis.

Other organisms susceptible in vitro to penicillin G are Neisseria gonorrhoeae, Corynebacterium diphtheriae, Bacillus anthracis , clostridia, Actinomyces species, Spirillum minus, Streptobacillus moniliformis, Listeria monocytogenes , and leptospira; Treponema pallidum is extremely susceptible. Some species of gram-negative bacilli were previously considered susceptible to very high intravenous doses of penicillin G (up to 80 million units/day) including some strains of Escherichia coli, Proteus mirabilis , salmonella, shigella, Enterobacter aerogenes (formerly Aerobacter aerogenes) and Alcaligenes faecalis. Penicillin G is no longer considered a drug of choice for infections caused by these organisms.

Susceptibility Test Methods

For specific information regarding susceptibility test interpretive criteria and associated test methods and quality control standards recognized by FDA for this drug, please see: http://www.fda.gov/STIC.

INDICATIONS AND USAGE

Therapy

Penicillin G Potassium Injection, USP is indicated in the treatment of serious infections caused by susceptible strains of the designated microorganisms in the conditions listed below. Appropriate culture and susceptibility tests should be done before treatment in order to isolate and identify organisms causing infection and to determine their susceptibility to penicillin G. Therapy with Penicillin G Potassium Injection, USP may be initiated before results of such tests are known when there is reason to believe the infection may involve any of the organisms listed below; however, once these results become available, appropriate therapy should be continued.

CLINICAL INDICATION

INFECTING ORGANISM

Septicemia, empyema, pneumonia, pericarditis, endocarditis, meningitis

Streptococcus pyogenes (group Aβ-hemolytic streptococcus), other β-hemolytic streptococci including groups C, H, G, L and M, Streptococcus pneumoniae and Staphylococcus species (non-penicillinase producing strains)

Anthrax

Bacillus anthracis

Actinomycosis (cervico-facial disease and thoracicand abdominal disease)

Actinomyces israelii

Botulism (adjunctive therapy to antitoxin), gas gangrene,and tetanus (adjunctive therapy to human tetanus immune globulin)

Clostridium species

Diphtheria (adjunctive therapy to antitoxin and preventionof the carrier state)

Corynebacterium diphtheriae

Erysipelothrix endocarditis

Erysipelothrix rhusiopathiae

Fusospirochetosis (severe infections of the oropharynx [Vincent’s],lower respiratory tract and genital area)

Fusobacterium species and spirochetes

Listeria infections including meningitis and endocarditis

Listeria monocytogenes

Pasteurella infections including bacteremia and meningitis

Pasteurella multocida

Haverhill fever

Streptobacillus moniliformis

Rat bite fever

Spirillum minus or Streptobacillus moniliformis

Disseminated gonococcal infections

Neisseria gonorrhoeae (penicillin-susceptible)

Syphilis (congenital and neurosyphilis)

Treponema pallidum

Meningococcal meningitis and/or septicemia

Neisseria meningitidis

Gram-negative bacillary infections (bacteremias) Penicillin G is not the drug of choice in the treatment of gram-negative bacillary infections.

Gram-negative bacillary organisms (i.e. Enterobacteriaceae)

To reduce the development of drug-resistant bacteria and maintain the effectiveness of Penicillin G Potassium Injection, USP and other antibacterial drugs, Penicillin G Potassium Injection, USP should be used only to treat or prevent infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy.

Page 1 of 4 1 2 3 4

All MedLibrary.org resources are included in as near-original form as possible, meaning that the information from the original provider has been rendered here with only typographical or stylistic modifications and not with any substantive alterations of content, meaning or intent.

This site is provided for educational and informational purposes only, in accordance with our Terms of Use, and is not intended as a substitute for the advice of a medical doctor, nurse, nurse practitioner or other qualified health professional.

Privacy Policy | Copyright © 2022. All Rights Reserved.