Pravastatin Sodium

PRAVASTATIN SODIUM- pravastatin sodium tablet
Golden State Medical Supply, Inc.

DESCRIPTION

Pravastatin sodium is one of a class of lipid-lowering compounds, the HMG-CoA reductase inhibitors, which reduce cholesterol biosynthesis. These agents are competitive inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, the enzyme catalyzing the early rate-limiting step in cholesterol biosynthesis, conversion of HMG-CoA to mevalonate.

Pravastatin sodium is designated chemically as Sodium (3R,5R)-3,5-dihydroxy-7-[(1S,2S,6S,8S,8aR)-6-hydroxy-2-methyl-8-[[(2S)-methylbutanoyl]oxy]-1,2,6,7,8,8a-hexahydronaphthalen-1-yl]heptanoate.

Structural formula:Chemical Structure-Pravastatin

Pravastatin sodium is an odorless, white to off-white, fine or crystalline powder. It is a relatively polar hydrophilic compound with a partition coefficient (octanol/water) of 0.59 at a pH of 7.0. It is soluble in methanol and water (>300 mg/mL), slightly soluble in isopropanol, and practically insoluble in acetone, acetonitrile, chloroform, and ether.

Each tablet, for oral administration contains 10 mg, 20 mg, 40 mg or 80 mg of pravastatin sodium. In addition, each tablet contains the following inactive ingredients: croscarmellose sodium, lactose monohydrate, magnesium stearate and microcrystalline cellulose. The 10 mg tablet also contains red ferric oxide, the 20 mg tablet also contains yellow ferric oxide, and the 40 mg tablet also contains a blend of yellow ferric oxide and FD&C blue #1, and the 80 mg tablet also contains yellow ferric oxide.

CLINICAL PHARMACOLOGY

Cholesterol and triglycerides in the bloodstream circulate as part of lipoprotein complexes. These complexes can be separated by density ultracentrifugation into high (HDL), intermediate (IDL), low (LDL), and very low (VLDL) density lipoprotein fractions. Triglycerides (TG) and cholesterol synthesized in the liver are incorporated into very low density lipoproteins (VLDLs) and released into the plasma for delivery to peripheral tissues. In a series of subsequent steps, VLDLs are transformed into intermediate density lipoproteins (IDLs), and cholesterol-rich low density lipoproteins (LDLs). High density lipoproteins (HDLs), containing apolipoprotein A, are hypothesized to participate in the reverse transport of cholesterol from tissues back to the liver.

Pravastatin sodium produces its lipid-lowering effect in two ways. First, as a consequence of its reversible inhibition of HMG-CoA reductase activity, it effects modest reductions in intracellular pools of cholesterol. This results in an increase in the number of LDL-receptors on cell surfaces and enhanced receptor-mediated catabolism and clearance of circulating LDL. Second, pravastatin inhibits LDL production by inhibiting hepatic synthesis of VLDL, the LDL precursor.

Clinical and pathologic studies have shown that elevated levels of total cholesterol (Total-C), low density lipoprotein cholesterol (LDL-C), and apolipoprotein B (ApoB – a membrane transport complex for LDL) promote human atherosclerosis. Similarly, decreased levels of HDL-cholesterol (HDL-C) and its transport complex, apolipoprotein A, are associated with the development of atherosclerosis. Epidemiologic investigations have established that cardiovascular morbidity and mortality vary directly with the level of Total-C and LDL-C and inversely with the level of HDL-C. Like LDL, cholesterol-enriched triglyceride-rich lipoproteins, including VLDL, IDL, and remnants, can also promote atherosclerosis. Elevated plasma TG are frequently found in a triad with low HDL-C levels and small LDL particles, as well as in association with non-lipid metabolic risk factors for coronary heart disease. As such, total plasma TG has not consistently been shown to be an independent risk factor for CHD. Furthermore, the independent effect of raising HDL or lowering TG on the risk of coronary and cardiovascular morbidity and mortality has not been determined. In both normal volunteers and patients with hypercholesterolemia, treatment with pravastatin sodium reduced Total-C, LDL-C, and apolipoprotein B. pravastatin sodium also reduced VLDL-C and TG and produced increases in HDL-C and apolipoprotein A. The effects of pravastatin on Lp (a), fibrinogen, and certain other independent biochemical risk markers for coronary heart disease are unknown. Although pravastatin is relatively more hydrophilic than other HMG-CoA reductase inhibitors, the effect of relative hydrophilicity, if any, on either efficacy or safety has not been established.

In one primary (West of Scotland Coronary Prevention Study — WOS)1 and pravastatin sodium has been shown to reduce cardiovascular morbidity and mortality across a wide range of cholesterol levels (see Clinical Studies).

Pharmacokinetics/Metabolism

Pravastatin sodium is administered orally in the active form. In clinical pharmacology studies in man, pravastatin is rapidly absorbed, with peak plasma levels of parent compound attained 1 to 1.5 hours following ingestion. Based on urinary recovery of radiolabeled drug, the average oral absorption of pravastatin is 34% and absolute bioavailability is 17%. While the presence of food in the gastrointestinal tract reduces systemic bioavailability, the lipid-lowering effects of the drug are similar whether taken with, or 1 hour prior to, meals.

Pravastatin undergoes extensive first-pass extraction in the liver (extraction ratio 0.66), which is its primary site of action, and the primary site of cholesterol synthesis and of LDL-C clearance. In vitro studies demonstrated that pravastatin is transported into hepatocytes with substantially less uptake into other cells. In view of pravastatin’s apparently extensive first-pass hepatic metabolism, plasma levels may not necessarily correlate perfectly with lipid-lowering efficacy. Pravastatin plasma concentrations [including: area under the concentration-time curve (AUC), peak (Cmax ), and steady-state minimum (Cmin )] are directly proportional to administered dose. Systemic bioavailability of pravastatin administered following a bedtime dose was decreased 60% compared to that following an AM dose. Despite this decrease in systemic bioavailability, the efficacy of pravastatin administered once daily in the evening, although not statistically significant, was marginally more effective than that after a morning dose. This finding of lower systemic bioavailability suggests greater hepatic extraction of the drug following the evening dose. Steady-state AUCs, Cmax and Cmin plasma concentrations showed no evidence of pravastatin accumulation following once or twice daily administration of pravastatin sodium tablets. Approximately 50% of the circulating drug is bound to plasma proteins. Following single dose administration of 14 C-pravastatin, the elimination half-life (t½ ) for total radioactivity (pravastatin plus metabolites) in humans is 77 hours.

Pravastatin sodium, like other HMG-CoA reductase inhibitors, has variable bioavailability. The coefficient of variation (CV), based on between-subject variability, was 50% to 60% for AUC. Pravastatin 20 mg was administered under fasting conditions in adults. The geometric means of Cmax and AUC ranged from 23.3 to 26.3 ng/mL and from 54.7 to 62.2 ng x hr/mL, respectively.

Approximately 20% of a radiolabeled oral dose is excreted in urine and 70% in the feces. After intravenous administration of radiolabeled pravastatin to normal volunteers, approximately 47% of total body clearance was via renal excretion and 53% by non-renal routes (i.e., biliary excretion and biotransformation). Since there are dual routes of elimination, the potential exists both for compensatory excretion by the alternate route as well as for accumulation of drug and/or metabolites in patients with renal or hepatic insufficiency.

In a study comparing the kinetics of pravastatin in patients with biopsy confirmed cirrhosis (N=7) and normal subjects (N=7), the mean AUC varied 18-fold in cirrhotic patients and 5-fold in healthy subjects. Similarly, the peak pravastatin values varied 47-fold for cirrhotic patients compared to 6-fold for healthy subjects.

Biotransformation pathways elucidated for pravastatin include: (a) isomerization to 6-epi pravastatin and the 3α-hydroxyisomer of pravastatin (SQ 31,906), (b) enzymatic ring hydroxylation to SQ 31,945, (c) ω-1 oxidation of the ester side chain, (d) β-oxidation of the carboxy side chain, (e) ring oxidation followed by aromatization, (f) oxidation of a hydroxyl group to a keto group, and (g) conjugation. The major degradation product is the 3α-hydroxy isomeric metabolite, which has one-tenth to one-fortieth the HMG-CoA reductase inhibitory activity of the parent compound.

In a single oral dose study using pravastatin 20 mg, the mean AUC for pravastatin was approximately 27% greater and the mean cumulative urinary excretion (CUE) approximately 19% lower in elderly men (65 to 75 years old) compared with younger men (19 to 31 years old). In a similar study conducted in women, the mean AUC for pravastatin was approximately 46% higher and the mean CUE approximately 18% lower in elderly women (65 to 78 years old) compared with younger women (18 to 38 years old). In both studies, Cmax , Tmax and t½ values were similar in older and younger subjects.

After 2 weeks of once-daily 20 mg oral pravastatin administration, the geometric means of AUC were 80.7 (CV 44%) and 44.8 (CV 89%) ng*hr/mL for children (8-11 years, N=14) and adolescents (12-16 years, N=10), respectively. The corresponding values for Cmax were 42.4 (CV 54%) and 18.6 ng/mL (CV 100%) for children and adolescents, respectively. No conclusion can be made based on these findings due to the small number of samples and large variability.

All MedLibrary.org resources are included in as near-original form as possible, meaning that the information from the original provider has been rendered here with only typographical or stylistic modifications and not with any substantive alterations of content, meaning or intent.

This site is provided for educational and informational purposes only, in accordance with our Terms of Use, and is not intended as a substitute for the advice of a medical doctor, nurse, nurse practitioner or other qualified health professional.

Privacy Policy | Copyright © 2020. All Rights Reserved.