Procainamide Hydrochloride

PROCAINAMIDE HYDROCHLORIDE- procainamide hydrochloride injection, solution
Medical Purchasing Solutions, LLC

Injection, USP

Multiple-dose Fliptop Vial R x only

WARNING: The prolonged administration of procainamide often leads to the development of a positive anti-nuclear antibody (ANA) test, with or without symptoms of a lupus erythematosus-like syndrome. If a positive ANA titer develops, the benefit versus risks of continued procainamide therapy should be assessed.

DESCRIPTION

Procainamide Hydrochloride Injection, USP is a sterile, nonpyrogenic solution of procainamide hydrochloride in water for injection. Each milliliter of the 2 mL vial contains procainamide hydrochloride 500 mg; methylparaben 1 mg and sodium metabisulfite 1.8 mg added in water for injection. Each milliliter of the 10 mL vial contains procainamide hydrochloride 100 mg; methylparaben 1 mg and sodium metabisulfite 0.8 mg added in water for injection. In both formulations, the solution may contain hydrochloric acid and/or sodium hydroxide for pH adjustment. pH 5.0 (4.0 to 6.0). Headspace nitrogen gassed.

Procainamide Hydrochloride Injection is intended for intravenous or intramuscular administration.

Procainamide hydrochloride, a Group 1A cardiac antiarrhythmic drug, is ρ-amino-N-[2-(diethylamino) ethyl] benzamide mono-hydrochloride. It has the following structural formula:

structural formula procainamide hydrochloride
(click image for full-size original)

M.W. 271.79

*(locus for acetylation to N-acetyl procainamide).

It differs from procaine which is the p-aminobenzoyl ester of 2-(diethylamino)-ethanol. Procainamide as the free base has a pK a of 9.23; the monohydrochloride is very soluble in water.

CLINICAL PHARMACOLOGY

Procainamide (PA) increases the effective refractory period of the atria, and to a lesser extent the bundle of His-Purkinje system and ventricles of the heart. It reduces impulse conduction velocity in the atria, His-Purkinje fibers, and ventricular muscle, but has variable effects on the atrioventricular (A-V) node, a direct slowing action and a weaker vagolytic effect which may speed A-V conduction slightly. Myocardial excitability is reduced in the atria, Purkinje fibers, papillary muscles, and ventricles by an increase in the threshold for excitation, combined with inhibition of ectopic pacemaker activity by retardation of the slow phase of diastolic depolarization, thus decreasing automaticity especially in ectopic sites. Contractility of the undamaged heart is usually not affected by therapeutic concentrations, although slight reduction of cardiac output may occur, and may be significant in the presence of myocardial damage. Therapeutic levels of PA may exert vagolytic effects and produce slight acceleration of heart rate, while high or toxic concentrations may prolong A-V conduction time or induce A-V block, or even cause abnormal automaticity and spontaneous firing by unknown mechanisms.

The electrocardiogram may reflect these effects by showing slight sinus tachycardia (due to the anticholinergic action) and widened QRS complexes and, less regularly, prolonged Q-T and P-R intervals (due to longer systole and slower conduction), as well as some decrease in QRS and T wave amplitude. These direct effects of PA on electrical activity, conduction, responsiveness, excitability and automaticity are characteristic of a Group 1A antiarrhythmic agent, the prototype for which is quinidine; PA effects are very similar. However, PA has weaker vagal blocking action than does quinidine, does not induce alpha-adrenergic blockade, and is less depressing to cardiac contractility.

Following intramuscular injection, procainamide is rapidly absorbed into the bloodstream, and plasma levels peak in 15 to 60 minutes, considerably faster than orally administered procainamide hydrochloride tablets or capsules which produce peak plasma levels in 90 to 120 minutes. Intravenous administration of Procainamide Hydrochloride Injection can produce therapeutic procainamide levels within minutes after infusion is started. About 15 to 20 percent of PA is reversibly bound to plasma proteins, and considerable amounts are more slowly and reversibly bound to tissues of the heart, liver, lung, and kidney. The apparent volume of distribution eventually reaches about 2 liters per kilogram body weight with a half-time of approximately five minutes. While PA has been shown in the dog to cross the blood-brain barrier, it did not concentrate in the brain at levels higher than in plasma. It is not known if PA crosses the placenta. Plasma esterases are far less active in hydrolysis of PA than of procaine. The half-time for elimination of PA is three to four hours in patients with normal renal function, but reduced creatinine clearance and advancing age each prolong the half-time of elimination of PA.

A significant fraction of the circulating PA may be metabolized in hepatocytes to N-acetylprocainamide (NAPA), ranging from 16 to 21 percent of an administered dose in “slow acetylators” to 24 to 33 percent in “fast-acetylators”. Since NAPA also has significant antiarrhythmic activity and somewhat slower renal clearance than PA, both hepatic acetylation rate capability and renal function, as well as age, have significant effects on the effective biologic half-time of therapeutic action of administered PA and the NAPA derivative. Trace amounts may be excreted in the urine as free and conjugated ρ-aminobenzoic acid, 30 to 60 percent as unchanged PA, and 6 to 52 percent as the NAPA derivative. Both PA and NAPA are eliminated by active tubular secretion as well as by glomerular filtration. Action of PA on the central nervous system is not prominent, but high plasma concentrations may cause tremors. While therapeutic plasma levels for PA have been reported to be 3 to 10 mcg/mL certain patients such as those with sustained ventricular tachycardia, may need higher levels for adequate control. This may justify the increased risk of toxicity (see OVERDOSAGE). Where programmed ventricular stimulation has been used to evaluate efficacy of PA in preventing recurrent ventricular tachyarrhythmias, higher plasma levels (mean, 13.6 mcg/mL) of PA were found necessary for adequate control.

INDICATIONS AND USAGE

Procainamide hydrochloride injection is indicated for the treatment of documented ventricular arrhythmias, such as sustained ventricular tachycardia, that, in the judgement of the physician, are life-threatening. Because of the proarrhythmic effects of procainamide, its use with lesser arrhythmias is generally not recommended. Treatment of patients with asymptomatic ventricular premature contractions should be avoided.

Initiation of procainamide treatment, as with other antiarrhythmic agents used to treat life-threatening arrhythmias, should be carried out in the hospital.

Antiarrhythmic drugs have not been shown to enhance survival in patients with ventricular arrhythmias.

Because procainamide has the potential to produce serious hematological disorders (0.5 percent) particularly leukopenia or agranulocytosis (sometimes fatal), its use should be reserved for patients in whom, in the opinion of the physician, the benefits of treatment clearly outweigh the risks. (see WARNINGS and Boxed Warning.)

CONTRAINDICATIONS

Complete Heart Block: Procainamide should not be administered to patients with complete heart block because of its effects in suppressing nodal or ventricular pacemakers and the hazard of asystole. It may be difficult to recognize complete heart block in patients with ventricular tachycardia, but if significant slowing of ventricular rate occurs during PA treatment without evidence of A-V conduction appearing, PA should be stopped. In cases of second degree A-V block or various types of hemiblock, PA should be avoided or discontinued because of the possibility of increased severity of block, unless the ventricular rate is controlled by an electrical pacemaker.

Idiosyncratic Hypersensitivity: In patients sensitive to procaine or other ester-type local anesthetics, cross sensitivity to PA is unlikely. However, it should be borne in mind, and PA should not be used if it produces acute allergic dermatitis, asthma, or anaphylactic symptoms.

Lupus Erythematosus: An established diagnosis of systemic lupus erythematosus is a contraindication to PA therapy, since aggravation of symptoms is highly likely.

Torsades de Pointes: In the unusual ventricular arrhythmia called “les torsades de pointes” (twistings of the points), characterized by alternation of one or more ventricular premature beats in the directions of the QRS complexes on ECG in persons with prolonged Q-T and often enhanced U waves, Group 1A antiarrhythmic drugs are contraindicated. Administration of PA in such cases may aggravate this special type of ventricular extrasystole or tachycardia instead of suppressing it.

Page 1 of 4 1 2 3 4

All MedLibrary.org resources are included in as near-original form as possible, meaning that the information from the original provider has been rendered here with only typographical or stylistic modifications and not with any substantive alterations of content, meaning or intent.

This site is provided for educational and informational purposes only, in accordance with our Terms of Use, and is not intended as a substitute for the advice of a medical doctor, nurse, nurse practitioner or other qualified health professional.

Privacy Policy | Copyright © 2024. All Rights Reserved.