PROCRIT (Page 2 of 9)

2.3 Zidovudine-treated Patients with HIV-infection

Starting Dose

The recommended starting dose in adults is 100 Units/kg as an intravenous or subcutaneous injection 3 times per week.

Dose Adjustment

  • If hemoglobin does not increase after 8 weeks of therapy, increase PROCRIT dose by approximately 50 to 100 Units/kg at 4- to 8-week intervals until hemoglobin reaches a level needed to avoid RBC transfusions or 300 Units/kg.
  • Withhold PROCRIT if hemoglobin exceeds 12 g/dL. Resume therapy at a dose 25% below the previous dose when hemoglobin declines to less than 11 g/dL.

Discontinue PROCRIT if an increase in hemoglobin is not achieved at a dose of 300 Units/kg for 8 weeks.

2.4 Patients on Cancer Chemotherapy

Initiate PROCRIT in patients on cancer chemotherapy only if the hemoglobin is less than 10 g/dL, and if there is a minimum of two additional months of planned chemotherapy.

Use the lowest dose of PROCRIT necessary to avoid RBC transfusions.

Recommended Starting Dose

Adults:

  • 150 Units/kg subcutaneously 3 times per week until completion of a chemotherapy course or
  • 40,000 Units subcutaneously weekly until completion of a chemotherapy course.

Pediatric Patients (5 to 18 years):

  • 600 Units/kg intravenously weekly until completion of a chemotherapy course.

Dose Reduction

Reduce dose by 25% if:

  • Hemoglobin increases greater than 1 g/dL in any 2-week period or
  • Hemoglobin reaches a level needed to avoid RBC transfusion.

Withhold dose if hemoglobin exceeds a level needed to avoid RBC transfusion. Reinitiate at a dose 25% below the previous dose when hemoglobin approaches a level where RBC transfusions may be required.

Dose Increase

After the initial 4 weeks of PROCRIT therapy, if hemoglobin increases by less than 1 g/dL and remains below 10 g/dL, increase dose to:

  • 300 Units/kg three times per week in adults or
  • 60,000 Units weekly in adults
  • 900 Units/kg (maximum 60,000 Units) weekly in pediatric patients

After 8 weeks of therapy, if there is no response as measured by hemoglobin levels or if RBC transfusions are still required, discontinue PROCRIT.

2.5 Surgery Patients

The recommended PROCRIT regimens are:

  • 300 Units/kg per day subcutaneously for 15 days total: administered daily for 10 days before surgery, on the day of surgery, and for 4 days after surgery.
  • 600 Units/kg subcutaneously in 4 doses administered 21, 14, and 7 days before surgery and on the day of surgery.

Deep venous thrombosis prophylaxis is recommended during PROCRIT therapy [see Warnings and Precautions (5.1)].

2.6 Preparation and Administration

  • Do not shake. Do not use PROCRIT that has been shaken or frozen.
  • Protect vials from light.
  • Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration. Do not use any vials exhibiting particulate matter or discoloration.
  • Discard unused portions of PROCRIT in preservative-free vials. Do not re-enter preservative-free vials.
  • Store unused portions of PROCRIT in multiple-dose vials at 36°F to 46°F (2°C to 8°C). Discard 21 days after initial entry.
  • Do not dilute. Do not mix with other drug solutions except for admixing as described below:Preservative-free PROCRIT from single-dose vials may be admixed in a syringe with bacteriostatic 0.9% sodium chloride injection, USP, with benzyl alcohol 0.9% (bacteriostatic saline) in a 1:1 ratio using aseptic technique at the time of administration. Do not mix PROCRIT with bacteriostatic saline when administering to pregnant women, lactating women, neonates, and infants [see Use in Specific Populations (8.1, 8.2, 8.4)].

3 DOSAGE FORMS AND STRENGTHS

Injection:

  • 2,000 Units/mL, 3,000 Units/mL, 4,000 Units/mL, 10,000 Units/mL, and 40,000 Units/mL of PROCRIT as a clear and colorless liquid in single-dose vials
  • 20,000 Units/2 mL (10,000 Units/mL) and 20,000 Units/mL of PROCRIT as a clear and colorless liquid in multiple-dose vials (contains benzyl alcohol)

4 CONTRAINDICATIONS

PROCRIT is contraindicated in patients with:

PROCRIT from multiple-dose vials contains benzyl alcohol and is contraindicated in:

5 WARNINGS AND PRECAUTIONS

5.1 Increased Mortality, Myocardial Infarction, Stroke, and Thromboembolism

  • In controlled clinical trials of patients with CKD comparing higher hemoglobin targets (13 – 14 g/dL) to lower targets (9 – 11.3 g/dL), PROCRIT and other ESAs increased the risk of death, myocardial infarction, stroke, congestive heart failure, thrombosis of hemodialysis vascular access, and other thromboembolic events in the higher target groups.
  • Using ESAs to target a hemoglobin level of greater than 11 g/dL increases the risk of serious adverse cardiovascular reactions and has not been shown to provide additional benefit [see Clinical Studies (14.1)]. Use caution in patients with coexistent cardiovascular disease and stroke [see Dosage and Administration (2.2)]. Patients with CKD and an insufficient hemoglobin response to ESA therapy may be at even greater risk for cardiovascular reactions and mortality than other patients. A rate of hemoglobin rise of greater than 1 g/dL over 2 weeks may contribute to these risks.
  • In controlled clinical trials of patients with cancer, PROCRIT and other ESAs increased the risks for death and serious adverse cardiovascular reactions. These adverse reactions included myocardial infarction and stroke.
  • In controlled clinical trials, ESAs increased the risk of death in patients undergoing coronary artery bypass graft surgery (CABG) and the risk of deep venous thrombosis (DVT) in patients undergoing orthopedic procedures.

The design and overall results of the 3 large trials comparing higher and lower hemoglobin targets are shown in Table 1.

Table 1: Randomized Controlled Trials Showing Adverse Cardiovascular Outcomes in Patients With CKD
Normal Hematocrit Study (NHS)(N=1265) CHOIR(N=1432) TREAT(N=4038)
Time Period of Trial 1993 to 1996 2003 to 2006 2004 to 2009
Population CKD patients on hemodialysis with coexisting CHF or CAD, hematocrit 30 ± 3% on epoetin alfa CKD patients not on dialysis with hemoglobin < 11 g/dL not previously administered epoetin alfa CKD patients not on dialysis with type II diabetes, hemoglobin ≤ 11 g/dL
Hemoglobin Target;Higher vs. Lower (g/dL) 14.0 vs. 10.0 13.5 vs. 11.3 13.0 vs. ≥ 9.0
Median (Q1, Q3)Achieved Hemoglobin level (g/dL) 12.6 (11.6, 13.3) vs. 10.3 (10.0, 10.7) 13.0 (12.2, 13.4) vs. 11.4 (11.1, 11.6) 12.5 (12.0, 12.8) vs. 10.6 (9.9, 11.3)
Primary Endpoint All-cause mortality or non-fatal MI All-cause mortality, MI, hospitalization for CHF, or stroke All-cause mortality, MI, myocardial ischemia, heart failure, and stroke
Hazard Ratio or Relative Risk (95% CI) 1.28 (1.06 – 1.56) 1.34 (1.03 – 1.74) 1.05 (0.94 – 1.17)
Adverse Outcome for Higher Target Group All-cause mortality All-cause mortality Stroke
Hazard Ratio or Relative Risk (95% CI) 1.27 (1.04 – 1.54) 1.48 (0.97 – 2.27) 1.92 (1.38 – 2.68)

Patients with Chronic Kidney Disease

Normal Hematocrit Study (NHS): A prospective, randomized, open-label study of 1265 patients with chronic kidney disease on dialysis with documented evidence of congestive heart failure or ischemic heart disease was designed to test the hypothesis that a higher target hematocrit (Hct) would result in improved outcomes compared with a lower target Hct. In this study, patients were randomized to epoetin alfa treatment targeted to a maintenance hemoglobin of either 14 ± 1 g/dL or 10 ± 1 g/dL. The trial was terminated early with adverse safety findings of higher mortality in the high hematocrit target group. Higher mortality (35% vs. 29%) was observed for the patients randomized to a target hemoglobin of 14 g/dL than for the patients randomized to a target hemoglobin of 10 g/dL. For all-cause mortality, the HR=1.27; 95% CI (1.04, 1.54); p=0.018. The incidence of nonfatal myocardial infarction, vascular access thrombosis, and other thrombotic events was also higher in the group randomized to a target hemoglobin of 14 g/dL.

CHOIR: A randomized, prospective trial, 1432 patients with anemia due to CKD who were not undergoing dialysis and who had not previously received epoetin alfa therapy were randomized to epoetin alfa treatment targeting a maintenance hemoglobin concentration of either 13.5 g/dL or 11.3 g/dL. The trial was terminated early with adverse safety findings. A major cardiovascular event (death, myocardial infarction, stroke, or hospitalization for congestive heart failure) occurred in 125 of the 715 patients (18%) in the higher hemoglobin group compared to 97 of the 717 patients (14%) in the lower hemoglobin group [hazard ratio (HR) 1.34, 95% CI: 1.03, 1.74; p=0.03].

TREAT: A randomized, double-blind, placebo-controlled, prospective trial of 4038 patients with: CKD not on dialysis (eGFR of 20 – 60 mL/min), anemia (hemoglobin levels ≤ 11 g/dL), and type 2 diabetes mellitus, patients were randomized to receive either darbepoetin alfa treatment or a matching placebo. Placebo group patients also received darbepoetin alfa when their hemoglobin levels were below 9 g/dL. The trial objectives were to demonstrate the benefit of darbepoetin alfa treatment of the anemia to a target hemoglobin level of 13 g/dL, when compared to a “placebo” group, by reducing the occurrence of either of two primary endpoints: (1) a composite cardiovascular endpoint of all-cause mortality or a specified cardiovascular event (myocardial ischemia, CHF, MI, and CVA) or (2) a composite renal endpoint of all-cause mortality or progression to end stage renal disease. The overall risks for each of the two primary endpoints (the cardiovascular composite and the renal composite) were not reduced with darbepoetin alfa treatment (see Table 1), but the risk of stroke was increased nearly two-fold in the darbepoetin alfa -treated group versus the placebo group: annualized stroke rate 2.1% vs. 1.1%, respectively, HR 1.92; 95% CI: 1.38, 2.68; p < 0.001. The relative risk of stroke was particularly high in patients with a prior stroke: annualized stroke rate 5.2% in the darbepoetin alfa-treated group and 1.9% in the placebo group, HR 3.07; 95% CI: 1.44, 6.54. Also, among darbepoetin alfa-treated subjects with a past history of cancer, there were more deaths due to all causes and more deaths adjudicated as due to cancer, in comparison with the control group.

Patients with Cancer

An increased incidence of thromboembolic reactions, some serious and life-threatening, occurred in patients with cancer treated with ESAs.

In a randomized, placebo-controlled study (Study 2 in Table 2 [see Warnings and Precautions (5.2)]) of 939 women with metastatic breast cancer receiving chemotherapy, patients received either weekly epoetin alfa or placebo for up to a year. This study was designed to show that survival was superior when epoetin alfa was administered to prevent anemia (maintain hemoglobin levels between 12 and 14 g/dL or hematocrit between 36% and 42%). This study was terminated prematurely when interim results demonstrated a higher mortality at 4 months (8.7% vs. 3.4%) and a higher rate of fatal thrombotic reactions (1.1% vs. 0.2%) in the first 4 months of the study among patients treated with epoetin alfa. Based on Kaplan-Meier estimates, at the time of study termination, the 12-month survival was lower in the epoetin alfa group than in the placebo group (70% vs. 76%; HR 1.37, 95% CI: 1.07, 1.75; p=0.012).

Patients Having Surgery

An increased incidence of deep venous thrombosis (DVT) in patients receiving epoetin alfa undergoing surgical orthopedic procedures was demonstrated [see Adverse Reactions (6.1)]. In a randomized, controlled study, 680 adult patients, not receiving prophylactic anticoagulation and undergoing spinal surgery, were randomized to 4 doses of 600 Units/kg epoetin alfa (7, 14, and 21 days before surgery, and the day of surgery) and standard of care (SOC) treatment (n=340) or to SOC treatment alone (n=340). A higher incidence of DVTs, determined by either color flow duplex imaging or by clinical symptoms, was observed in the epoetin alfa group (16 [4.7%] patients) compared with the SOC group (7 [2.1%] patients). In addition to the 23 patients with DVTs included in the primary analysis, 19 [2.8%] patients (n=680) experienced 1 other thrombovascular event (TVE) each (12 [3.5%] in the epoetin alfa group and 7 [2.1%] in the SOC group). Deep venous thrombosis prophylaxis is strongly recommended when ESAs are used for the reduction of allogeneic RBC transfusions in surgical patients [see Dosage and Administration (2.5)].

Increased mortality was observed in a randomized, placebo-controlled study of PROCRIT in adult patients who were undergoing CABG surgery (7 deaths in 126 patients randomized to PROCRIT versus no deaths among 56 patients receiving placebo). Four of these deaths occurred during the period of study drug administration and all 4 deaths were associated with thrombotic events.

All MedLibrary.org resources are included in as near-original form as possible, meaning that the information from the original provider has been rendered here with only typographical or stylistic modifications and not with any substantive alterations of content, meaning or intent.

This site is provided for educational and informational purposes only, in accordance with our Terms of Use, and is not intended as a substitute for the advice of a medical doctor, nurse, nurse practitioner or other qualified health professional.

Privacy Policy | Copyright © 2021. All Rights Reserved.