Propafenone Hydrochloride (Page 5 of 8)

12.3 Pharmacokinetics

Absorption/Bioavailability

Maximal plasma levels of propafenone are reached between 3 to 8 hours following the administration of propafenone hydrochloride extended-release capsules. Propafenone is known to undergo extensive and saturable presystemic biotransformation which results in a dose and dosage form dependent absolute bioavailability; e.g., a 150 mg immediate-release tablet had an absolute bioavailability of 3.4%, while a 300 mg immediate-release tablet had an absolute bioavailability of 10.6%. Absorption from a 300 mg solution dose was rapid, with an absolute bioavailability of 21.4%. At still larger doses, above those recommended, bioavailability of propafenone from immediate-release tablets increased still further.

Relative bioavailability assessments have been performed between propafenone hydrochloride extended-release capsules and propafenone hydrochloride immediate-release tablets. In extensive metabolizers, the bioavailability of propafenone from the SR formulation was less than that of the immediate-release formulation as the more gradual release of propafenone from the prolonged-release preparations resulted in an increase of overall first pass metabolism [see Metabolism]. As a result of the increased first pass effect, higher daily doses of propafenone were required from the extended-release formulation relative to the immediate-release formulation, to obtain similar exposure to propafenone. The relative bioavailability of propafenone from the 325 mg twice daily regimens of propafenone hydrochloride extended-release capsules approximates that of propafenone hydrochloride immediate-release 150 mg 3 times daily regimen. Mean exposure to 5-hydroxypropafenone was about 20 to 25% higher after extended-release capsule administration than after immediate-release tablet administration.

Food increased the exposure to propafenone 4-fold after single dose administration of 425 mg of propafenone hydrochloride extended-release capsules. However, in the multiple dose Trial (425 mg dose twice daily), the difference between the fed and fasted state was not significant.

Distribution

Following intravenous administration of propafenone, plasma levels decline in a bi-phasic manner consistent with a 2 compartment pharmacokinetic model. The average distribution half-life corresponding to the first phase was about 5 minutes. The volume of the central compartment was about 88 liters (1.1 L/kg) and the total volume of distribution about 252 liters.

In serum, propafenone is greater than 95% bound to proteins within the concentration range of 0.5 to 2 mcg/mL.

Metabolism

There are two genetically determined patterns of propafenone metabolism. In over 90% of patients, the drug is rapidly and extensively metabolized with an elimination half-life from 2 to 10 hours. These patients metabolize propafenone into two active metabolites: 5-hydroxypropafenone which is formed by CYP2D6 and N-depropylpropafenone (norpropafenone) which is formed by both CYP3A4 and CYP1A2. In less than 10% of patients, metabolism of propafenone is slower because the 5-hydroxy metabolite is not formed or is minimally formed. In these patients, the estimated propafenone elimination half-life ranges from 10 to 32 hours. Decreased ability to form the 5-hydroxy metabolite of propafenone is associated with a diminished ability to metabolize debrisoquine and a variety of other drugs such as encainide, metoprolol, and dextromethorphan whose metabolism is mediated by the CYP2D6 isozyme. In these patients, the N-depropylpropafenone metabolite occurs in quantities comparable to the levels occurring in extensive metabolizers.

As a consequence of the observed differences in metabolism, administration of propafenone hydrochloride extended-release capsules to slow and extensive metabolizers results in significant differences in plasma concentrations of propafenone, with slow metabolizers achieving concentrations about twice those of the extensive metabolizers at daily doses of 850 mg/day. At low doses the differences are greater, with slow metabolizers attaining concentrations about 3 to 4 times higher than extensive metabolizers. In extensive metabolizers, saturation of the hydroxylation pathway (CYP2D6) results in greater-than-linear increases in plasma levels following administration of propafenone hydrochloride extended-release capsules. In slow metabolizers, propafenone pharmacokinetics is linear. Because the difference decreases at high doses and is mitigated by the lack of the active 5-hydroxymetabolite in the slow metabolizers, and because steady-state conditions are achieved after 4 to 5-days of dosing in all patients, the recommended dosing regimen of propafenone hydrochloride extended-release capsules is the same for all patients. The larger inter-subject variability in blood levels require that the dose of the drug be titrated carefully in patients with close attention paid to clinical and ECG evidence of toxicity [see Dosage and Administration (2)].

The 5-hydroxypropafenone and norpropafenone metabolites have electrophysiologic properties similar to propafenone in vitro. In man after administration of propafenone hydrochloride extended-release capsules, the 5-hydroxypropafenone metabolite is usually present in concentrations less than 40% of propafenone. The norpropafenone metabolite is usually present in concentrations less than 10% of propafenone.

Inter-Subject Variability: With propafenone, there is a considerable degree of inter-subject variability in pharmacokinetics which is due in large part to the first pass hepatic effect and non-linear pharmacokinetics in extensive metabolizers. A higher degree of inter-subject variability in pharmacokinetic parameters of propafenone was observed following both single and multiple dose administration of propafenone hydrochloride extended-release capsules. Inter-subject variability appears to be substantially less in the poor metabolizer group than in the extensive metabolizer group, suggesting that a large portion of the variability is intrinsic to CYP2D6 polymorphism rather than to the formulation.

Stereochemistry: Propafenone hydrochloride is a racemic mixture. The R- and S-enantiomers of propafenone display stereoselective disposition characteristics. In vitro and in vivo studies have shown that the R-isomer of propafenone is cleared faster than the S-isomer via the 5-hydroxylation pathway (CYP2D6). This results in a higher ratio of S-propafenone to R-propafenone at steady state. Both enantiomers have equivalent potency to block sodium channels; however, the S-enantiomer is a more potent beta-antagonist than the R-enantiomer. Following administration of propafenone hydrochloride immediate-release tablets or propafenone hydrochloride extended-release capsules, the S/R ratio for the area under the plasma concentration-time curve was about 1.7. The S/R ratios of propafenone obtained after administration of 225 mg, 325 mg and 425 mg propafenone hydrochloride extended-release capsules are independent of dose. In addition, no difference in the average values of the S/R ratios is evident between genotypes or over time.

Specific Populations

Patients with Hepatic Impairment: Decreased liver function increases the bioavailability of propafenone. Absolute bioavailability assessments have not been determined for the propafenone hydrochloride extended-release capsule formulation. Absolute bioavailability of propafenone hydrochloride immediate-release tablets is inversely related to indocyanine green clearance, reaching 60% to 70% at clearances of 7 mL/min and below. Protein binding decreases to about 88% in patients with severe hepatic dysfunction. The clearance of propafenone is reduced and the elimination half-life increased in patients with significant hepatic dysfunction [see Warnings and Precautions (5.9)].

13 NONCLINICAL TOXICOLOGY

13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility

Lifetime maximally tolerated oral dose studies in mice (up to 360 mg/kg/day, approximately twice MRHD on a mg/m2 basis) and rats (up to 270 mg/kg/day, approximately 3 times the MRHD on a mg/m2 basis) provided no evidence of a carcinogenic potential for propafenone.

Propafenone was not mutagenic in the Ames (salmonella) test and the in vivo mouse dominantlethal test. Propafenone was not clastogenic in the human lymphocyte chromosome aberration assay in vitro, the rat and Chinese hamster micronucleus tests, and other in vivo tests for chromosomal aberrations in rat bone marrow and Chinese hamster bone marrow and spermatogonia.

Propafenone, administered intravenously, has been shown to decrease spermatogenesis at lethal doses in rabbits (≥3.5 mg/kg/day) or at near-lethal dose levels in monkeys and dogs (≤5 mg/kg/day); doses were less than the MRHD on a mg/m2 basis. These effects were reversible and did not impair fertility in rabbits at an intravenous dose of 3.5 mg/kg/day (a spermatogenesis-impairing dose). Effects on spermatogenesis were not found when propafenone was administered to rats either orally or intravenously up to 360 mg/kg/day or 6 mg/kg/day, respectively, or in dogs at oral doses up to 240 mg/kg/day (up to approximately 4 or 9 times the MRHD on a mg/m2 basis in rats and dogs, respectively). Treatment of male rabbits for 10 weeks prior to mating at an oral dose of 120 mg/kg/day (approximately 2 times the MRHD on a mg/m2 basis) did not result in evidence of impaired fertility. Nor was there evidence of impaired fertility when propafenone was administered orally to male and female rats at dose levels up to 270 mg/kg/day (approximately 3 times the MRHD on a mg/m2 basis) for 10 weeks (males) or 2 weeks (females) prior to mating through mating.

All MedLibrary.org resources are included in as near-original form as possible, meaning that the information from the original provider has been rendered here with only typographical or stylistic modifications and not with any substantive alterations of content, meaning or intent.

This site is provided for educational and informational purposes only, in accordance with our Terms of Use, and is not intended as a substitute for the advice of a medical doctor, nurse, nurse practitioner or other qualified health professional.

Privacy Policy | Copyright © 2024. All Rights Reserved.