PROVIGIL — modafinil tablet
Physicians Total Care, Inc.


PROVIGIL (modafinil) is a wakefulness-promoting agent for oral administration. Modafinil is a racemic compound. The chemical name for modafinil is 2-[(diphenylmethyl)sulfinyl]acetamide. The molecular formula is C15 H15 NO2 S and the molecular weight is 273.35.

The chemical structure is:

Structural Formula

Modafinil is a white to off-white, crystalline powder that is practically insoluble in water and cyclohexane. It is sparingly to slightly soluble in methanol and acetone. PROVIGIL tablets contain 100 mg or 200 mg of modafinil and the following inactive ingredients: lactose, microcrystalline cellulose, pregelatinized starch, croscarmellose sodium, povidone, and magnesium stearate.


Mechanism of Action and Pharmacology

The precise mechanism(s) through which modafinil promotes wakefulness is unknown. Modafinil has wake-promoting actions similar to sympathomimetic agents like amphetamine and methylphenidate, although the pharmacologic profile is not identical to that of sympathomimetic amines.

Modafinil has weak to negligible interactions with receptors for norepinephrine, serotonin, dopamine, GABA, adenosine, histamine-3, melatonin, and benzodiazepines. Modafinil also does not inhibit the activities of MAO-B or phosphodiesterases II-V.

Modafinil-induced wakefulness can be attenuated by the α1 -adrenergic receptor antagonist prazosin; however, modafinil is inactive in other in vitro assay systems known to be responsive to α-adrenergic agonists, such as the rat vas deferens preparation.

Modafinil is not a direct- or indirect-acting dopamine receptor agonist. However, in vitro, modafinil binds to the dopamine transporter and inhibits dopamine reuptake. This activity has been associated in vivo with increased extracellular dopamine levels in some brain regions of animals. In genetically engineered mice lacking the dopamine transporter (DAT), modafinil lacked wake-promoting activity, suggesting that this activity was DAT-dependent. However, the wake-promoting effects of modafinil, unlike those of amphetamine, were not antagonized by the dopamine receptor antagonist haloperidol in rats. In addition, alpha-methyl-p-tyrosine, a dopamine synthesis inhibitor, blocks the action of amphetamine, but does not block locomotor activity induced by modafinil.

In the cat, equal wakefulness-promoting doses of methylphenidate and amphetamine increased neuronal activation throughout the brain. Modafinil at an equivalent wakefulness-promoting dose selectively and prominently increased neuronal activation in more discrete regions of the brain. The relationship of this finding in cats to the effects of modafinil in humans is unknown.

In addition to its wake-promoting effects and ability to increase locomotor activity in animals, modafinil produces psychoactive and euphoric effects, alterations in mood, perception, thinking, and feelings typical of other CNS stimulants in humans. Modafinil has reinforcing properties, as evidenced by its self-administration in monkeys previously trained to self-administer cocaine. Modafinil was also partially discriminated as stimulant-like.

The optical enantiomers of modafinil have similar pharmacological actions in animals. Two major metabolites of modafinil, modafinil acid and modafinil sulfone, do not appear to contribute to the CNS-activating properties of modafinil.


Modafinil is a racemic compound, whose enantiomers have different pharmacokinetics (e.g., the half-life of the l -isomer is approximately three times that of the d -isomer in adult humans). The enantiomers do not interconvert. At steady state, total exposure to the l -isomer is approximately three times that for the d -isomer. The trough concentration (Cminss ) of circulating modafinil after once daily dosing consists of 90% of the l -isomer and 10% of the d -isomer. The effective elimination half-life of modafinil after multiple doses is about 15 hours. The enantiomers of modafinil exhibit linear kinetics upon multiple dosing of 200-600 mg/day once daily in healthy volunteers. Apparent steady states of total modafinil and l -(-)-modafinil are reached after 2-4 days of dosing.


Absorption of PROVIGIL tablets is rapid, with peak plasma concentrations occurring at 2-4 hours. The bioavailability of PROVIGIL tablets is approximately equal to that of an aqueous suspension. The absolute oral bioavailability was not determined due to the aqueous insolubility (<1 mg/mL) of modafinil, which precluded intravenous administration. Food has no effect on overall PROVIGIL bioavailability; however, its absorption (tmax ) may be delayed by approximately one hour if taken with food.


Modafinil is well distributed in body tissue with an apparent volume of distribution (~0.9 L/kg) larger than the volume of total body water (0.6 L/kg). In human plasma, in vitro, modafinil is moderately bound to plasma protein (~60%, mainly to albumin). At serum concentrations obtained at steady state after doses of 200 mg/day, modafinil exhibits no displacement of protein binding of warfarin, diazepam or propranolol. Even at much larger concentrations (1000µM; > 25 times the Cmax of 40µM at steady state at 400 mg/day), modafinil has no effect on warfarin binding. Modafinil acid at concentrations >500µM decreases the extent of warfarin binding, but these concentrations are >35 times those achieved therapeutically.

Metabolism and Elimination

The major route of elimination is metabolism (~90%), primarily by the liver, with subsequent renal elimination of the metabolites. Urine alkalinization has no effect on the elimination of modafinil.

Metabolism occurs through hydrolytic deamidation, S-oxidation, aromatic ring hydroxylation, and glucuronide conjugation. Less than 10% of an administered dose is excreted as the parent compound. In a clinical study using radiolabeled modafinil, a total of 81% of the administered radioactivity was recovered in 11 days post-dose, predominantly in the urine (80% vs. 1.0% in the feces). The largest fraction of the drug in urine was modafinil acid, but at least six other metabolites were present in lower concentrations. Only two metabolites reach appreciable concentrations in plasma, i.e., modafinil acid and modafinil sulfone. In preclinical models, modafinil acid, modafinil sulfone, 2-[(diphenylmethyl)sulfonyl]acetic acid and 4-hydroxy modafinil, were inactive or did not appear to mediate the arousal effects of modafinil.

In adults, decreases in trough levels of modafinil have sometimes been observed after multiple weeks of dosing, suggesting auto-induction, but the magnitude of the decreases and the inconsistency of their occurrence suggest that their clinical significance is minimal. Significant accumulation of modafinil sulfone has been observed after multiple doses due to its long elimination half-life of 40 hours. Induction of metabolizing enzymes, most importantly cytochrome P-450 (CYP) 3A4, has also been observed in vitro after incubation of primary cultures of human hepatocytes with modafinil and in vivo after extended administration of modafinil at 400 mg/day. (For further discussion of the effects of modafinil on CYP enzyme activities, see PRECAUTIONS, Drug Interactions.)

Drug-Drug Interactions:

Based on in vitro data, modafinil is metabolized partially by the 3A isoform subfamily of hepatic cytochrome P450 (CYP3A4). In addition, modafinil has the potential to inhibit CYP2C19, suppress CYP2C9, and induce CYP3A4, CYP2B6, and CYP1A2. Because modafinil and modafinil sulfone are reversible inhibitors of the drug-metabolizing enzyme CYP2C19, co-administration of modafinil with drugs such as diazepam, phenytoin and propranolol, which are largely eliminated via that pathway, may increase the circulating levels of those compounds. In addition, in individuals deficient in the enzyme CYP2D6 (i.e., 7-10% of the Caucasian population; similar or lower in other populations), the levels of CYP2D6 substrates such as tricyclic antidepressants and selective serotonin reuptake inhibitors, which have ancillary routes of elimination through CYP2C19, may be increased by co-administration of modafinil. Dose adjustments may be necessary for patients being treated with these and similar medications (See PRECAUTIONS, Drug Interactions). An in vitro study demonstrated that armodafinil (one of the enantiomers of modafinil) is a substrate of P-glycoprotein.

Coadministration of modafinil with other CNS active drugs such as methylphenidate and dextroamphetamine did not significantly alter the pharmacokinetics of either drug.

Chronic administration of modafinil 400 mg was found to decrease the systemic exposure to two CYP3A4 substrates, ethinyl estradiol and triazolam, after oral administration suggesting that CYP3A4 had been induced. Chronic administration of modafinil can increase the elimination of substrates of CYP3A4. Dose adjustments may be necessary for patients being treated with these and similar medications (See PRECAUTIONS, Drug Interactions).

An apparent concentration-related suppression of CYP2C9 activity was observed in human hepatocytes after exposure to modafinil in vitro suggesting that there is a potential for a metabolic interaction between modafinil and the substrates of this enzyme (e.g., S-warfarin, phenytoin). However, in an interaction study in healthy volunteers, chronic modafinil treatment did not show a significant effect on the pharmacokinetics of warfarin when compared to placebo. (See PRECAUTIONS, Drug Interactions, Other Drugs, Warfarin).

Special Populations

Gender Effect:

The pharmacokinetics of modafinil are not affected by gender.

Age Effect:

A slight decrease (~20%) in the oral clearance (CL/F) of modafinil was observed in a single dose study at 200 mg in 12 subjects with a mean age of 63 years (range 53 – 72 years), but the change was considered not likely to be clinically significant. In a multiple dose study (300 mg/day) in 12 patients with a mean age of 82 years (range 67 – 87 years), the mean levels of modafinil in plasma were approximately two times those historically obtained in matched younger subjects. Due to potential effects from the multiple concomitant medications with which most of the patients were being treated, the apparent difference in modafinil pharmacokinetics may not be attributable solely to the effects of aging. However, the results suggest that the clearance of modafinil may be reduced in the elderly (See DOSAGE AND ADMINISTRATION).

Race Effect:

The influence of race on the pharmacokinetics of modafinil has not been studied.

Renal Impairment:

In a single dose 200 mg modafinil study, severe chronic renal failure (creatinine clearance ≤ 20 mL/min) did not significantly influence the pharmacokinetics of modafinil, but exposure to modafinil acid (an inactive metabolite) was increased 9-fold (See PRECAUTIONS).

Hepatic Impairment:

Pharmacokinetics and metabolism were examined in patients with cirrhosis of the liver (6 males and 3 females). Three patients had stage B or B+ cirrhosis (per the Child criteria) and 6 patients had stage C or C+ cirrhosis. Clinically 8 of 9 patients were icteric and all had ascites. In these patients, the oral clearance of modafinil was decreased by about 60% and the steady state concentration was doubled compared to normal patients. The dose of PROVIGIL should be reduced in patients with severe hepatic impairment (See PRECAUTIONS and DOSAGE AND ADMINISTRATION).

All resources are included in as near-original form as possible, meaning that the information from the original provider has been rendered here with only typographical or stylistic modifications and not with any substantive alterations of content, meaning or intent.

This site is provided for educational and informational purposes only, in accordance with our Terms of Use, and is not intended as a substitute for the advice of a medical doctor, nurse, nurse practitioner or other qualified health professional.

Privacy Policy | Copyright © 2020. All Rights Reserved.