QUELICIN (Page 2 of 5)

2.6 Drug Incompatibility

QUELICIN is acidic (pH is between 3.0 and 4.5) and may not be compatible with alkaline solutions having a pH greater than 8.5 (e.g., barbiturate solutions). Therefore, do not mix QUELICIN with alkaline solutions.

3 DOSAGE FORMS AND STRENGTHS

QUELICIN™ (Succinylcholine Chloride Injection, USP) is supplied as a clear, colorless solution as follows:

  • 1,000 mg/10 mL (100 mg/mL) in single-dose fliptop vials contains: 100 mg of succinylcholine anhydrous (equivalent to 113.27 mg of Succinylcholine Chloride, USP).
  • 200 mg/10 mL (20 mg/mL) in multiple-dose fliptop vials contains: 20 mg of succinylcholine anhydrous (equivalent to 22.65 mg of Succinylcholine Chloride, USP).

4 CONTRAINDICATIONS

QUELICIN is contraindicated:

5 WARNINGS AND PRECAUTIONS

5.1 Ventricular Dysrhythmias, Cardiac Arrest, and Death From Hyperkalemic Rhabdomyolysis in Pediatric Patients

There have been reports of ventricular dysrhythmias, cardiac arrest, and death secondary to acute rhabdomyolysis with hyperkalemia in apparently healthy pediatric patients who received succinylcholine. Many of these pediatric patients were subsequently found to have a skeletal muscle myopathy such as Duchenne muscular dystrophy whose clinical signs were not obvious.

The syndrome often presented as sudden cardiac arrest within minutes after the administration of succinylcholine. These pediatric patients were usually, but not exclusively, males, and most frequently 8 years of age or younger. There have also been reports in adolescents. There may be no signs or symptoms to alert the practitioner to which patients are at risk. A careful history and physical may identify developmental delays suggestive of a myopathy. A preoperative creatine kinase could identify some but not all patients at risk.

When a healthy-appearing pediatric patient develops cardiac arrest within minutes after administration of QUELICIN, not felt to be due to inadequate ventilation, oxygenation or anesthetic overdose, immediate treatment for hyperkalemia should be instituted. Due to the abrupt onset of this syndrome, routine resuscitative measures are likely to be unsuccessful. Careful monitoring of the electrocardiogram may alert the practitioner to peaked T-waves (an early sign). Administration of intravenous calcium, bicarbonate, and glucose with insulin, with hyperventilation have resulted in successful resuscitation in some of the reported cases. Extraordinary and prolonged resuscitative efforts have been effective in some cases. In addition, in the presence of signs of malignant hyperthermia, appropriate treatment should be initiated concurrently [see Warnings and Precautions (5.5)].

Because it is difficult to identify which patients are at risk, reserve the use of QUELICIN in pediatric patients for emergency intubation or instances where immediate securing of the airway is necessary, e.g., laryngospasm, difficult airway, full stomach, or for intramuscular use when a suitable vein is inaccessible.

5.2 Anaphylaxis

Severe anaphylactic reactions to neuromuscular blocking agents, including succinylcholine, have been reported. These reactions have, in some cases, been life-threatening and fatal. Due to the potential severity of these reactions, the necessary precautions, such as the immediate availability of appropriate emergency treatment, should be taken. Allergic cross-reactivity between neuromuscular blocking agents, both depolarizing and non-depolarizing, has been reported in this class of drugs. Therefore, assess patients for previous anaphylactic reactions to other neuromuscular blocking agents before administering QUELICIN.

5.3 Risk of Death due to Medication Errors

Administration of QUELICIN results in paralysis, which may lead to respiratory arrest and death; this progression may be more likely to occur in a patient for whom it is not intended. Confirm proper selection of intended product and avoid confusion with other injectable solutions that are present in critical care and other clinical settings. If another healthcare provider is administering the product, ensure that the intended dose is clearly labeled and communicated.

5.4 Hyperkalemia

QUELICIN may induce serious cardiac arrhythmias or cardiac arrest due to hyperkalemia in patients with electrolyte abnormalities and those who may have digitalis toxicity.

QUELICIN is contraindicated after the acute phase of injury following major burns, multiple trauma, extensive denervation of skeletal muscle, or upper motor neuron injury [see Contraindications (4)]. The risk of hyperkalemia in these patients increases over time and usually peaks at 7 to 10 days after the injury. The risk is dependent on the extent and location of the injury. The precise time of onset and the duration of the risk period are undetermined.

Patients with chronic abdominal infection, subarachnoid hemorrhage, or conditions causing degeneration of central and peripheral nervous systems are at an increased risk of developing severe hyperkalemia after QUELICIN administration. Consider avoiding use of QUELICIN in these patients or verify the patient’s baseline potassium levels are within the normal range prior to QUELICIN administration.

5.5 Malignant Hyperthermia

Succinylcholine administration has been associated with acute onset of malignant hyperthermia, a potentially fatal hypermetabolic state of skeletal muscle. The risk of developing malignant hyperthermia following succinylcholine administration increases with the concomitant administration of volatile anesthetics. Malignant hyperthermia frequently presents as intractable spasm of the jaw muscles (masseter spasm) which may progress to generalized rigidity, increased oxygen demand, tachycardia, tachypnea and profound hyperpyrexia. Successful outcome depends on recognition of early signs, such as jaw muscle spasm, acidosis, or generalized rigidity to initial administration of succinylcholine for tracheal intubation, or failure of tachycardia to respond to deepening anesthesia. Skin mottling, rising temperature and coagulopathies may occur later in the course of the hypermetabolic process. Recognition of the syndrome is a signal for discontinuance of anesthesia, attention to increased oxygen consumption, correction of acidosis, support of circulation, assurance of adequate urinary output and institution of measures to control rising temperature. Intravenous dantrolene sodium is recommended as an adjunct to supportive measures in the management of malignant hyperthermia. Consult the dantrolene prescribing information for additional information about the management of malignant hyperthermic crisis. Continuous monitoring of temperature and expired CO2 is recommended as an aid to early recognition of malignant hyperthermia.

5.6 Bradycardia

Intravenous bolus administration of QUELICIN in pediatric patients (including infants) may result in profound bradycardia or, rarely, asystole. In both adult and pediatric patients the incidence of bradycardia, which may progress to asystole, is higher following a second dose of succinylcholine. The incidence and severity of bradycardia is higher in pediatric patients than adults. Whereas bradycardia is common in pediatric patients after an initial dose of 1.5 mg/kg, bradycardia is seen in adults only after repeated exposure. Pretreatment with anticholinergic agents (e.g., atropine) may reduce the occurrence of bradyarrhythmias.

5.7 Increase in Intraocular Pressure

Succinylcholine causes an increase in intraocular pressure. Avoid QUELICIN in instances in which an increase in intraocular pressure is undesirable (e.g., narrow angle glaucoma, penetrating eye injury) unless the potential benefit of its use outweighs the potential risk.

5.8 Prolonged Neuromuscular Block due to Phase II Block and Tachyphylaxis

When QUELICIN is given over a prolonged period of time, the characteristic depolarization block of the myoneural junction (Phase I block) may change to a block with characteristics superficially resembling a non-depolarizing block (Phase II block). Prolonged respiratory muscle paralysis or weakness may be observed in patients manifesting this transition to Phase II block. Tachyphylaxis occurs with repeated administration [see Clinical Pharmacology (12.2)].

When Phase II block is suspected in cases of prolonged neuromuscular blockade, positive diagnosis should be made by peripheral nerve stimulation, prior to administration of any anticholinesterase drug. Reversal of Phase II block is a medical decision which must be made upon the basis of the patient, clinical pharmacology, and the experience and judgment of the clinician. The presence of Phase II block is indicated by fade of responses to successive stimuli (preferably “train of four”). The use of an anticholinesterase drug such as neostigmine to reverse Phase II block should be accompanied by appropriate doses of an anticholinergic drug to prevent disturbances of cardiac rhythm. After adequate reversal of Phase II block with an anticholinesterase agent, the patient should be continually observed for at least 1 hour for signs of return of muscle relaxation. Reversal should not be attempted unless: (1) a peripheral nerve stimulator is used to determine the presence of Phase II block (since anticholinesterase agents will potentiate succinylcholine-induced Phase I block), and (2) spontaneous recovery of muscle twitch has been observed for at least 20 minutes and has reached a plateau with further recovery proceeding slowly; this delay is to ensure complete hydrolysis of succinylcholine by plasma cholinesterase prior to administration of the anticholinesterase agent. Should the type of block be misdiagnosed, depolarization of the type initially induced by succinylcholine (i.e., Phase I block) will be prolonged by an anticholinesterase agent.

All MedLibrary.org resources are included in as near-original form as possible, meaning that the information from the original provider has been rendered here with only typographical or stylistic modifications and not with any substantive alterations of content, meaning or intent.

This site is provided for educational and informational purposes only, in accordance with our Terms of Use, and is not intended as a substitute for the advice of a medical doctor, nurse, nurse practitioner or other qualified health professional.

Privacy Policy | Copyright © 2022. All Rights Reserved.