Sertraline Hydrochloride (Page 6 of 10)

Laboratory Tests

False-positive urine immunoassay screening tests for benzodiazepines have been reported in patients taking sertraline. This is due to lack of specificity of the screening tests. False-positive test results may be expected for several days following discontinuation of sertraline therapy. Confirmatory tests, such as gas chromatography/mass spectrometry, will distinguish sertraline from benzodiazepines.

Drug Interactions

Potential Effects of Coadministration of Drugs Highly Bound to Plasma Proteins –Because sertraline is tightly bound to plasma protein, the administration of sertraline hydrochloride to a patient taking another drug which is tightly bound to protein (e.g., warfarin, digitoxin) may cause a shift in plasma concentrations potentially resulting in an adverse effect. Conversely, adverse effects may result from displacement of protein bound sertraline hydrochloride by other tightly bound drugs.

In a study comparing prothrombin time AUC (0-120 hr) following dosing with warfarin (0.75 mg/kg) before and after 21 days of dosing with either sertraline hydrochloride (50-200 mg/day) or placebo, there was a mean increase in prothrombin time of 8% relative to baseline for sertraline hydrochloride compared to a 1% decrease for placebo (p<0.02). The normalization of prothrombin time for the sertraline hydrochloride group was delayed compared to the placebo group. The clinical significance of this change is unknown. Accordingly, prothrombin time should be carefully monitored when sertraline hydrochloride therapy is initiated or stopped.

Cimetidine –In a study assessing disposition of sertraline hydrochloride (100 mg) on the second of 8 days of cimetidine administration (800 mg daily), there were significant increases in sertraline hydrochloride mean AUC (50%), Cmax (24%) and half-life (26%) compared to the placebo group. The clinical significance of these changes is unknown.

CNS Active Drugs –In a study comparing the disposition of intravenously administered diazepam before and after 21 days of dosing with either sertraline hydrochloride (50 to 200 mg/day escalating dose) or placebo, there was a 32% decrease relative to baseline in diazepam clearance for the sertraline hydrochloride group compared to a 19% decrease relative to baseline for the placebo group (p<0.03). There was a 23% increase in Tmax for desmethyldiazepam in the sertraline hydrochloride group compared to a 20% decrease in the placebo group (p<0.03). The clinical significance of these changes is unknown.

In a placebo-controlled trial in normal volunteers, the administration of two doses of Sertraline hydrochloride did not significantly alter steady-state lithium levels or the renal clearance of lithium.

Nonetheless, at this time, it is recommended that plasma lithium levels be monitored following initiation of Sertraline hydrochloride therapy with appropriate adjustments to the lithium dose.

In a controlled study of a single dose (2 mg) of pimozide, 200 mg sertraline (q.d.) co-administration to steady state was associated with a mean increase in pimozide AUC and Cmax of about 40%, but was not associated with any changes in EKG. Since the highest recommended pimozide dose (10 mg) has not been evaluated in combination with sertraline, the effect on QT interval and PK parameters at doses higher than 2 mg at this time are not known. While the mechanism of this interaction is unknown, due to the narrow therapeutic index of pimozide and due to the interaction noted at a low dose of pimozide, concomitant administration of Sertraline hydrochloride and pimozide should be contraindicated (see CONTRAINDICATIONS).

Results of a placebo-controlled trail in normal volunteers suggest that chronic administration of sertraline 200 mg/day does not produce clinically important inhibition of phenytoin metabolism. Nonetheless, at this time, it is recommended that plasma phenytoin concentrations be monitored following initiation of Sertraline Hydrochloride therapy with appropriate adjustments to the phenytoin dose, particularly in patients with multiple underlying medical conditions and/or those receiving multiple concomitant medications.

The effect of Sertraline hydrochloride on valproate levels has not been evaluated in clinical trials. In the absence of such data, it is recommended that plasma valproate levels be monitored following initiation of Sertraline hydrochloride therapy with appropriate adjustments to the valproate dose.

The risk of using sertraline hydrochloride in combination with other CNS active drugs has not been systematically evaluated. Consequently, caution is advised if the concomitant administration of sertraline hydrochloride and such drugs is required.

There is limited controlled experience regarding the optimal timing of switching from other drugs effective in the treatment of major depressive disorder, premenstrual dysphoric disorder to sertraline hydrochloride. Care and prudent medical judgment should be exercised when switching, particularly from long-acting agents. The duration of an appropriate washout period which should intervene before switching from one selective serotonin reuptake inhibitor (SSRI) to another has not been established.

Monoamine Oxidase Inhibitors –See CONTRAINDICATIONS, WARNINGS and DOSAGE AND ADMINISTRATION.

Drugs Metabolized by P450 3A4 –In three separate in vivo interaction studies, sertraline was co-administered with cytochrome P450 3A4 substrates, terfenadine, carbamazepine, or cisapride under steady-state conditions. The results of these studies indicated that sertraline did not increase plasma concentrations of terfenadine, carbamazepine, or cisapride. These data indicate that sertraline’s extent of inhibition of P450 3A4 activity is not likely to be of clinical significance. Results of the interaction study with cisapride indicate that sertraline 200 mg (q.d.) induces the metabolism of cisapride (cisapride AUC and Cmax were reduced by about 35%).

Drugs Metabolized by P450 2D6 – Many drugs effective in the treatment of major depressive disorder, e.g., the SSRIs, including sertraline, and most tricyclic antidepressant drugs effective in the treatment of major depressive disorder inhibit the biochemical activity of the drug metabolizing isozyme cytochrome P450 2D6 (debrisoquin hydroxylase), and, thus, may increase the plasma concentrations of co-administered drugs that are metabolized by P450 2D6. The drugs for which this potential interaction is of greatest concern are those metabolized primarily by 2D6 and which have a narrow therapeutic index, e.g., the tricyclic antidepressant drugs effective in the treatment of major depressive disorder and the Type 1C antiarrhythmics propafenone and flecainide. The extent to which this interaction is an important clinical problem depends on the extent of the inhibition of P450 2D6 by the antidepressant and the therapeutic index of the coadministered drug. There is variability among the drugs effective in the treatment of major depressive disorder in the extent of clinically important 2D6 inhibition, and in fact sertraline at lower doses has a less prominent inhibitory effect on 2D6 than some others in the class. Nevertheless, even sertraline has the potential for clinically important 2D6 inhibition. Consequently, concomitant use of a drug metabolized by P450 2D6 with sertraline hydrochloride may require lower doses than usually prescribed for the other drug. Furthermore, whenever sertraline hydrochloride is withdrawn from co-therapy, an increased dose of the co-administered drug may be required (see Tricyclic Antidepressant Drugs Effective in the Treatment of Major Depressive Disorder under PRECAUTIONS).

Serotonergic Drugs: see CONTRAINDICATIONS, WARNINGS and DOSAGE AND ADMINISTRATION.

Triptans: There have been rare post marketing reports of serotonin syndrome with use of an SNRI or an SSRI and a triptan. If concomitant treatment of SNRIs and SSRIs, including sertraline hydrochloride, with a triptan is clinically warranted, careful observation of the patient is advised, particularly during treatment initiation and dose increases (see WARNINGS – Serotonin Syndrome).

Sumatriptan –There have been rare postmarketing reports describing patients with weakness, hyperreflexia, and incoordination following the use of a selective serotonin reuptake inhibitor (SSRI) and sumatriptan. If concomitant treatment with sumatriptan and an SSRI (e.g., citalopram, fluoxetine, fluvoxamine, paroxetine, sertraline) is clinically warranted, appropriate observation of the patient is advised.

Tricyclic Antidepressant Drugs Effective in the Treatment of Major Depressive Disorder (TCAs) –The extent to which SSRI–TCA interactions may pose clinical problems will depend on the degree of inhibition and the pharmacokinetics of the SSRI involved. Nevertheless, caution is indicated in the co-administration of TCAs with sertraline hydrochloride, because sertraline may inhibit TCA metabolism. Plasma TCA concentrations may need to be monitored, and the dose of TCA may need to be reduced, if a TCA is co-administered with sertraline hydrochloride (see Drugs Metabolized by P450 2D6 under PRECAUTIONS).

Hypoglycemic Drugs –In a placebo-controlled trial in normal volunteers, administration of sertraline hydrochloride for 22 days (including 200 mg/day for the final 13 days) caused a statistically significant 16% decrease from baseline in the clearance of tolbutamide following an intravenous 1000 mg dose. Sertraline hydrochloride administration did not noticeably change either the plasma protein binding or the apparent volume of distribution of tolbutamide, suggesting that the decreased clearance was due to a change in the metabolism of the drug. The clinical significance of this decrease in tolbutamide clearance is unknown.

Atenolol – Sertraline hydrochloride (100 mg) when administered to 10 healthy male subjects had no effect on the beta-adrenergic blocking ability of atenolol.

Digoxin –In a placebo-controlled trial in normal volunteers, administration of sertraline hydrochloride for 17 days (including 200 mg/day for the last 10 days) did not change serum digoxin levels or digoxin renal clearance.

Microsomal Enzyme Induction –Preclinical studies have shown sertraline hydrochloride to induce hepatic microsomal enzymes. In clinical studies, sertraline hydrochloride was shown to induce hepatic enzymes minimally as determined by a small (5%) but statistically significant decrease in antipyrine half-life following administration of 200 mg/day for 21 days. This small change in antipyrine half-life reflects a clinically insignificant change in hepatic metabolism.

Drugs that Interfere with Hemostasis (Non-selective NSAIDs, Aspirin, Warfarin, etc.)

Serotonin release by platelets plays an important role in hemostasis. Epidemiological studies of the case-control and cohort design that have demonstrated an association between use of psychotropic drugs that interfere with serotonin reuptake and the occurrence of upper gastrointestinal bleeding have also shown that concurrent use of an NSAID or aspirin may potentiate this risk of bleeding. These studies have also shown that concurrent use of an NSAID or aspirin may potentiate this risk of bleeding. Altered anticoagulant effects, including increased bleeding, have been reported when SSRIs or SNRIs are coadministered with warfarin. Patients receiving warfarin therapy should be carefully monitored when Sertraline hydrochloride is initiated or discontinued.

Electroconvulsive Therapy –There are no clinical studies establishing the risks or benefits of the combined use of electroconvulsive therapy (ECT) and Sertraline hydrochloride.

Alcohol –Although Sertraline hydrochloride did not potentiate the cognitive and psychomotor effects of alcohol in experiments with normal subjects, the concomitant use of sertraline hydrochloride and alcohol is not recommended.

Carcinogenesis –Lifetime carcinogenicity studies were carried out in CD-1 mice and Long-Evans rats at doses up to 40 mg/kg/day. These doses correspond to 1 times (mice) and 2 times (rats) the maximum recommended human dose (MRHD) on a mg/m2 basis. There was a dose-related increase of liver adenomas in male mice receiving sertraline at 10-40 mg/kg (0.25-1.0 times the MRHD on a mg/m2 basis). No increase was seen in female mice or in rats of either sex receiving the same treatments, nor was there an increase in hepatocellular carcinomas. Liver adenomas have a variable rate of spontaneous occurrence in the CD-1 mouse and are of unknown significance to humans. There was an increase in follicular adenomas of the thyroid in female rats receiving sertraline at 40 mg/kg (2 times the MRHD on a mg/m2 basis); this was not accompanied by thyroid hyperplasia. While there was an increase in uterine adenocarcinomas in rats receiving sertraline at 10-40 mg/kg (0.5-2.0 times the MRHD on a mg/m2 basis) compared to placebo controls, this effect was not clearly drug related.

Mutagenesis –Sertraline had no genotoxic effects, with or without metabolic activation, based on the following assays: bacterial mutation assay; mouse lymphoma mutation assay; and tests for cytogenetic aberrations in vivo in mouse bone marrow and in vitro in human lymphocytes.

Impairment of Fertility –A decrease in fertility was seen in one of two rat studies at a dose of 80 mg/kg (4 times the maximum recommended human dose on a mg/m2 basis).

Pregnancy–Pregnancy Category C –Reproduction studies have been performed in rats and rabbits at doses up to 80 mg/kg/day and 40 mg/kg/day, respectively. These doses correspond to approximately 4 times the maximum recommended human dose (MRHD) on a mg/m2 basis. There was no evidence of teratogenicity at any dose level. When pregnant rats and rabbits were given sertraline during the period of organogenesis, delayed ossification was observed in fetuses at doses of 10 mg/kg (0.5 times the MRHD on a mg/m2 basis) in rats and 40 mg/kg (4 times the MRHD on a mg/m2 basis) in rabbits. When female rats received sertraline during the last third of gestation and throughout lactation, there was an increase in the number of stillborn pups and in the number of pups dying during the first 4 days after birth. Pup body weights were also decreased during the first four days after birth. These effects occurred at a dose of 20 mg/kg (1 times the MRHD on a mg/m2 basis). The no effect dose for rat pup mortality was 10 mg/kg (0.5 times the MRHD on a mg/m2 basis). The decrease in pup survival was shown to be due to in utero exposure to sertraline. The clinical significance of these effects is unknown. There are no adequate and well-controlled studies in pregnant women. Sertraline hydrochloride should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

Pregnancy-Nonteratogenic Effects –Neonates exposed to sertraline hydrochloride and other SSRIs or SNRIs, late in the third trimester have developed complications requiring prolonged hospitalization, respiratory support, and tube feeding. These findings are based on postmarketing reports. Such complications can arise immediately upon delivery. Reported clinical findings have included respiratory distress, cyanosis, apnea, seizures, temperature instability, feeding difficulty, vomiting, hypoglycemia, hypotonia, hypertonia, hyperreflexia, tremor, jitteriness, irritability, and constant crying. These features are consistent with either a direct toxic effect of SSRIs and SNRIs or, possibly, a drug discontinuation syndrome. It should be noted that, in some cases, the clinical picture is consistent with serotonin syndrome (see WARNINGS:Serotonin Syndrome).

Infants exposed to SSRIs in pregnancy may have an increased risk for persistent pulmonary hypertension of the newborn (PPHN). PPHN occurs in 1 – 2 per 1,000 live births in the general population and is associated with substantial neonatal morbidity and mortality. Several recent epidemiologic studies suggest a positive statistical association between SSRI use (including sertraline hydrochloride) in pregnancy and PPHN. Other studies do not show a significant statistical association.

Physicians should also note the results of a prospective longitudinal study of 201 pregnant women with a history of major depression, who were either on antidepressants or had received antidepressants less than 12 weeks prior to their last menstrual period, and were in remission. Women who discontinued antidepressant medication during pregnancy showed a significant increase in relapse of their major depression compared to those women who remained on antidepressant medication throughout pregnancy.

When treating a pregnant woman with sertraline hydrochloride, the physician should carefully consider both the potential risks of taking an SSRI, along with the established benefits of treating depression with an antidepressant. This decision can only be made on a case by case basis (see DOSAGE AND ADMINISTRATION).

Labor and Delivery –The effect of sertraline hydrochloride on labor and delivery in humans is unknown.

Nursing Mothers –It is not known whether, and if so in what amount, sertraline or its metabolites are excreted in human milk. Because many drugs are excreted in human milk, caution should be exercised when sertraline hydrochloride is administered to a nursing woman.

Pediatric Use – The efficacy of Sertraline hydrochloride for the treatment of obsessive-compulsive disorder was demonstrated in a 12-week, multicenter, placebo-controlled study with 187 outpatients ages 6-17 (see Clinical Trials under CLINICAL PHARMACOLOGY). Safety and effectiveness in the pediatric population other than pediatric patients with OCD have not been established (see BOX WARNING and WARNINGS-Clinical Worsening and Suicide Risk). Two placebo controlled trials (n=373) in pediatric patients with MDD have been conducted with sertraline hydrochloride, and the data were not sufficient to support a claim for use in pediatric patients. Anyone considering the use of Sertraline hydrochloride in a child or adolescent must balance the potential risks with the clinical need.

The safety of Sertraline hydrochloride use in children and adolescents with OCD, ages 6-18, was evaluated in a 12-week, multicenter, placebo-controlled study with 187 outpatients, ages 6-17, and in a flexible dose, 52 week open extension study of 137 patients, ages 6-18, who had completed the initial 12week, double-blind, placebo-controlled study. Sertraline hydrochloride was administered at doses of either 25 mg/day (children, ages 6-12) or 50 mg/day (adolescents, ages 13-18) and then titrated in weekly 25 mg/day or 50 mg/day increments, respectively, to a maximum dose of 200 mg/day based upon clinical response. The mean dose for completers was 157 mg/day. In the acute 12 week pediatric study and in the 52 week study, Sertraline hydrochloride had an adverse event profile generally similar to that observed in adults.

Sertraline pharmacokinetics were evaluated in 61 pediatric patients between 6 and 17 years of age with major depressive disorder or OCD and revealed similar drug exposures to those of adults when plasma concentration was adjusted for weight (see Pharmacokinetics under CLINICAL PHARMACOLOGY).

Approximately 600 patients with major depressive disorder or OCD between 6 and 17 years of age have received Sertraline hydrochloride in clinical trials, both controlled and uncontrolled. The adverse event profile observed in these patients was generally similar to that observed in adult studies with sertraline hydrochloride (see ADVERSE REACTIONS). As with other SSRIs, decreased appetite and weight loss have been observed in association with the use of Sertraline hydrochloride. In a pooled analysis of two 10-week, double-blind, placebo-controlled, flexible dose (50-200 mg) outpatient trials for major depressive disorder (n=373), there was a difference in weight change between sertraline and placebo of roughly 1 kilogram, for both children (ages 6-11) and adolescents (ages 12-17), in both cases representing a slight weight loss for sertraline compared to a slight gain for placebo. At baseline the mean weight for children was 39.0 kg for sertraline and 38.5 kg for placebo. At baseline the mean weight for adolescents was 61.4 kg for sertraline and 62.5 kg for placebo. There was a bigger difference between sertraline and placebo in the proportion of outliers for clinically important weight loss in children than in adolescents. For children, about 7% had a weight loss > 7% of body weight compared to none of the placebo patients; for adolescents, about 2% had a weight loss > 7% of body weight compared to about 1% of the placebo patients. A subset of these patients who completed the randomized controlled trials (sertraline n=99, placebo n=122) were continued into a 24-week, flexible-dose, open-label, extension study. A mean weight loss of approximately 0.5 kg was seen during the first eight weeks of treatment for subjects with first exposure to sertraline during the open-label extension study, similar to mean weight loss observed among sertraline treated subjects during the first eight weeks of the randomized controlled trials. The subjects continuing in the open label study began gaining weight compared to baseline by week 12 of sertraline treatment. Those subjects who completed 34 weeks of sertraline treatment (10 weeks in a placebo controlled trial + 24 weeks open label, n=68) had weight gain that was similar to that expected using data from age-adjusted peers. Regular monitoring of weight and growth is recommended if treatment of a pediatric patient with an SSRI is to be continued long term. Safety and effectiveness in pediatric patients below the age of 6 have not been established.

The risks, if any, that may be associated with Sertraline hydrochloride’s use beyond 1 year in children and adolescents with OCD or major depressive disorder have not been systematically assessed. The prescriber should be mindful that the evidence relied upon to conclude that sertraline is safe for use in children and adolescents derives from clinical studies that were 10 to 52 weeks in duration and from the extrapolation of experience gained with adult patients. In particular, there are no studies that directly evaluate the effects of long-term sertraline use on the growth, development, and maturation of children and adolescents. Although there is no affirmative finding to suggest that sertraline possesses a capacity to adversely affect growth, development or maturation, the absence of such findings is not compelling evidence of the absence of the potential of sertraline to have adverse effects in chronic use (see WARNINGS – Clinical Worsening and Suicide Risk).

Geriatric Use –U.S. geriatric clinical studies of Sertraline hydrochloride in major depressive disorder included 663 Sertraline hydrochloride -treated subjects ≥ 65 years of age, of those, 180 were ≥ 75 years of age. No overall differences in the pattern of adverse reactions were observed in the geriatric clinical trial subjects relative to those reported in younger subjects (see ADVERSE REACTIONS), and other reported experience has not identified differences in safety patterns between the elderly and younger subjects. As with all medications, greater sensitivity of some older individuals cannot be ruled out. There were 947 subjects in placebo-controlled geriatric clinical studies of Sertraline hydrochloride in major depressive disorder. No overall differences in the pattern of efficacy were observed in the geriatric clinical trial subjects relative to those reported in younger subjects.

Other Adverse Events in Geriatric Patients. In 354 geriatric subjects treated with Sertraline hydrochloride in placebo-controlled trials, the overall profile of adverse events was generally similar to that shown in Tables 2 and 3. Urinary tract infection was the only adverse event not appearing in Tables 2 and 3 and reported at an incidence of at least 2% and at a rate greater than placebo in placebo-controlled trials.

SSRIS and SNRIs, including Sertraline hydrochloride, have been associated with cases of clinically significant hyponatremia in elderly patients, who may be at greater risk for this adverse event (see PRECAUTIONS, Hyponatremia).

All MedLibrary.org resources are included in as near-original form as possible, meaning that the information from the original provider has been rendered here with only typographical or stylistic modifications and not with any substantive alterations of content, meaning or intent.

This site is provided for educational and informational purposes only, in accordance with our Terms of Use, and is not intended as a substitute for the advice of a medical doctor, nurse, nurse practitioner or other qualified health professional.

Privacy Policy | Copyright © 2024. All Rights Reserved.