SUCCINYLCHOLINE CHLORIDE- succinylcholine chloride injection, solution
BluePoint Laboratories

A short-acting depolarizing skeletal muscle relaxant.



There have been rare reports of acute rhabdomyolysis with hyperkalemia followed by ventricular dysrhythmias, cardiac arrest and death after the administration of succinylcholine to apparently healthy pediatric patients who were subsequently found to have undiagnosed skeletal muscle myopathy, most frequently Duchenne’s muscular dystrophy.

This syndrome often presents as peaked T-waves and sudden cardiac arrest within minutes after the administration of the drug in healthy appearing pediatric patients (usually, but not exclusively, males, and most frequently 8 years of age or younger). There have also been reports in adolescents. Therefore, when a healthy appearing infant or child develops cardiac arrest soon after administration of succinylcholine, not felt to be due to inadequate ventilation, oxygenation or anesthetic overdose, immediate treatment for hyperkalemia should be instituted. This should include administration of intravenous calcium, bicarbonate, and glucose with insulin, with hyperventilation. Due to the abrupt onset of this syndrome, routine resuscitative measures are likely to be unsuccessful. However, extraordinary and prolonged resuscitative efforts have resulted in successful resuscitation in some reported cases. In addition, in the presence of signs of malignant hyperthermia, appropriate treatment should be instituted concurrently.

Since there may be no signs or symptoms to alert the practitioner to which patients are at risk, it is recommended that the use of succinylcholine in pediatric patients should be reserved for emergency intubation or instances where immediate securing of the airway is necessary, e.g., laryngospasm, difficult airway, full stomach, or for intramuscular use when a suitable vein is inaccessible (see PRECAUTIONS: Pediatric Use and DOSAGE AND ADMINISTRATION).

This drug should be used only by individuals familiar with its actions, characteristics and hazards.


Succinylcholine chloride injection, USP is a sterile, nonpyrogenic solution to be used as an ultra short-acting, depolarizing, skeletal muscle relaxant, see HOW SUPPLIEDfor summary of content and characteristics of the solutions. The solutions are for intramuscular or intravenous use.

Succinylcholine Chloride is chemically designated as Ethanaminium, 2,2’-[(1,4-dioxo-1,4-butanediyl) bis(oxy)] bis [N, N, N-trimethyl-, dichloride, dihydrate, its molecular formula is C14 H30 Cl2 N2 O4 .2H2 O and its molecular weight is 397.34.

It has the following structural formula:

(click image for full-size original)

Succinylcholine is a diquaternary base consisting of the dichloride salt of the dicholine ester of succinic acid. Succinylcholine chloride, USP is a white, odorless, crystalline powder. It is freely soluble in water, slightly soluble in alcohol and practically insoluble in ether. The drug is incompatible with alkaline solutions but relatively stable in acid solutions. Solutions of the drug lose potency unless refrigerated.

Solution intended for multiple-dose administration contains methylparaben, 0.18% and propylparaben, 0.02% as preservatives. Product not requiring dilution (multiple-dose fliptop vial) contains sodium chloride to render isotonic. May contain sodium hydroxide and/or hydrochloric acid for pH adjustment. pH is 3.6 (3.0 to 4.5). See table in HOW SUPPLIED section for characteristics.

Sodium Chloride, USP, chemically designated NaCl, is a white crystalline compound freely soluble in water.


Succinylcholine is a depolarizing skeletal muscle relaxant. As does acetylcholine, it combines with the cholinergic receptors of the motor end plate to produce depolarization. This depolarization may be observed as fasciculations. Subsequent neuromuscular transmission is inhibited so long as adequate concentration of succinylcholine remains at the receptor site. Onset of flaccid paralysis is rapid (less than one minute after intravenous administration), and with single administration lasts approximately 4 to 6 minutes.

Succinylcholine is rapidly hydrolyzed by plasma cholinesterase to succinylmonocholine (which possesses clinically insignificant depolarizing muscle relaxant properties) and then more slowly to succinic acid and choline (see PRECAUTIONS). About 10% of the drug is excreted unchanged in the urine. Succinylcholine levels were reported to be below the detection limit of 2 mcg/mL after 2.5 minutes of an intravenous bolus dose of 1 mg/kg or 2 mg/kg in fourteen (14) anesthetized patients. The paralysis following administration of succinylcholine is progressive, with differing sensitivities of different muscles. This initially involves consecutively the levator muscles of the face, muscles of the glottis and finally the intercostals and the diaphragm and all other skeletal muscles.

Succinylcholine has no direct action on the uterus or other smooth muscle structures. Because it is highly ionized and has low fat solubility, it does not readily cross the placenta.

Tachyphylaxis occurs with repeated administration (see PRECAUTIONS).

Depending on the dose and duration of succinylcholine administration, the characteristic depolarizing neuromuscular block (Phase I block) may change to a block with characteristics superficially resembling a non-depolarizing block (Phase II block). This may be associated with prolonged respiratory muscle paralysis or weakness in patients who manifest the transition to Phase II block. When this diagnosis is confirmed by peripheral nerve stimulation, it may sometimes be reversed with anticholinesterase drugs such as neostigmine (see PRECAUTIONS). Anticholinesterase drugs may not always be effective. If given before succinylcholine is metabolized by cholinesterase, anticholinesterase drugs may prolong rather than shorten paralysis.

Succinylcholine has no direct effect on the myocardium. Succinylcholine stimulates both autonomic ganglia and muscarinic receptors which may cause changes in cardiac rhythm, including cardiac arrest. Changes in rhythm, including cardiac arrest, may also result from vagal stimulation, which may occur during surgical procedures, or from hyperkalemia, particularly in pediatric patients (see PRECAUTIONS: Pediatric Use). These effects are enhanced by halogenated anesthetics.

Succinylcholine causes an increase in intraocular pressure immediately after its injection and during the fasciculation phase, and slight increases which may persist after onset of complete paralysis (see WARNINGS).

Succinylcholine may cause slight increases in intracranial pressure immediately after its injection and during the fasciculation phase (see PRECAUTIONS).

As with other neuromuscular blocking agents, the potential for releasing histamine is present following succinylcholine administration. Signs and symptoms of histamine mediated release such as flushing, hypotension and bronchoconstriction are, however, uncommon in normal clinical usage.

Succinylcholine has no effect on consciousness, pain threshold or cerebration. It should be used only with adequate anesthesia (see WARNINGS).


Succinylcholine chloride injection is indicated as an adjunct to general anesthesia, to facilitate tracheal intubation, and to provide skeletal muscle relaxation during surgery or mechanical ventilation.

Page 1 of 4 1 2 3 4

All resources are included in as near-original form as possible, meaning that the information from the original provider has been rendered here with only typographical or stylistic modifications and not with any substantive alterations of content, meaning or intent.

This site is provided for educational and informational purposes only, in accordance with our Terms of Use, and is not intended as a substitute for the advice of a medical doctor, nurse, nurse practitioner or other qualified health professional.

Privacy Policy | Copyright © 2020. All Rights Reserved.