Symtuza (Page 4 of 10)

8. USE IN SPECIFIC POPULATIONS

8.1 Pregnancy

Pregnancy Exposure Registry

There is a pregnancy exposure registry that monitors pregnancy outcomes in individuals exposed to SYMTUZA during pregnancy. Healthcare providers are encouraged to register patients by calling the Antiretroviral Pregnancy Registry (APR) at 1-800-258-4263.

Risk Summary

SYMTUZA is not recommended during pregnancy because of substantially lower exposures of darunavir and cobicistat during the second and third trimesters [see Dosage and Administration (2.5)]. A study evaluating the pharmacokinetics of antiretrovirals during pregnancy demonstrated substantially lower exposures of darunavir and cobicistat in the second and third trimesters compared to the post-partum period (see Data) and [see Clinical Pharmacology (12.3)].

Prospective pregnancy data from the APR are not sufficient to adequately assess the risk of birth defects or miscarriage. However, available data from the APR show no statistically significant difference in the overall risk of major birth defects for darunavir, cobicistat, emtricitabine, or tenofovir alafenamide (TAF) compared with the background rate for major birth defects of 2.7% in a U.S. reference population of the Metropolitan Atlanta Congenital Defects Program (MACDP) (see Data). The rate of miscarriage is not reported in the APR. The estimated background rate of miscarriage in clinically recognized pregnancies in the U.S. general population is 15–20%. The background risk of major birth defects and miscarriage for the indicated population is unknown.

In animal reproduction studies, no adverse developmental effects were observed when the components of SYMTUZA were administered separately at darunavir exposures less than 1- (mice and rabbits) and 2.6-times (rats) higher, at cobicistat exposures 1.7- and 4.1-times higher (rats and rabbits respectively), at emtricitabine exposures 88- and 7.3- times higher (mice and rabbits, respectively), and tenofovir alafenamide exposures equal to or 85- times higher (rats and rabbits, respectively) than human exposures at the recommended daily dose of these components in SYMTUZA (see Data). No adverse developmental effects were seen when cobicistat was administered to rats through lactation at cobicistat exposures up to 1.1 times the human exposure at the recommended therapeutic dose.

Clinical Considerations

Not Recommended During Pregnancy

SYMTUZA is not recommended for use during pregnancy because of substantially lower exposures of darunavir and cobicistat during pregnancy (see Data) and [see Clinical Pharmacology (12.3)].

SYMTUZA should not be initiated in pregnant individuals. An alternative regimen is recommended for individuals who become pregnant during therapy with SYMTUZA.

Data

Human Data

Darunavir and cobicistat in combination with a background regimen was evaluated in a clinical trial of 7 pregnant individuals taking darunavir and cobicistat prior to enrollment and who were willing to remain on darunavir and cobicistat throughout the study. The study period included the second and third trimesters, and through 12 weeks postpartum. Six pregnant individuals completed the trial.

Exposure to darunavir and cobicistat as part of an antiretroviral regimen was substantially lower during the second and third trimesters of pregnancy compared with postpartum [see Clinical Pharmacology (12.3)].

One out of 6 pregnant individuals who completed the study experienced virologic failure with HIV-1 RNA >1,000 copies/mL from the third trimester visit through the postpartum period. Five pregnant individuals had sustained virologic response (HIV RNA <50 copies/mL) throughout the study period. There are no clinical data on the virologic response when darunavir and cobicistat are initiated during pregnancy.

Prospective reports from the APR of overall major birth defects in pregnancies exposed to the components of SYMTUZA are compared with a U.S. background major birth defect rate. Methodological limitations of the APR include the use of MACDP as the external comparator group. Limitations of using an external comparator include differences in methodology and populations, as well as confounding due to the underlying disease.

Darunavir: Based on prospective reports to the APR of over 960 exposures to darunavir-containing regimens during pregnancy resulting in live births (including over 640 exposed in the first trimester and over 320 exposed in the second/third trimester), the prevalence of birth defects in live births was 3.7% (95% CI: 2.4% to 5.5%) with first trimester exposure to darunavir containing-regimens and 2.5% (95% CI: 1.1% to 4.9%) with second/third trimester exposure to darunavir-containing regimens.

Cobicistat: Based on prospective reports to the APR of over 560 exposures to cobicistat-containing regimens during pregnancy resulting in live births (including over 470 exposed in the first trimester and over 80 exposed in the second/third trimester), the prevalence of birth defects in live births was 3.6% (95% CI: 2.1% to 5.7%) and 1.1% (95% CI: 0.0% to 6.2%) with first and second/third trimester, respectively, to cobicistat-containing regimens.

Emtricitabine: Based on prospective reports to the APR of over 5400 exposures to emtricitabine-containing regimens during pregnancy resulting in live births (including over 3900 exposed in the first trimester and over 1500 exposed in the second/third trimester), the prevalence of birth defects in live births was 2.6% (95% CI: 2.2% to 3.2%) with first trimester exposure to emtricitabine-containing regimens and 2.7% (95% CI: 1.9% to 3.7%) with the second/third trimester exposure to emtricitabine-containing regimens.

Tenofovir alafenamide (TAF): Based on prospective reports to the APR of over 660 exposures to TAF-containing regimens during pregnancy resulting in live births (including over 520 exposed in the first trimester and over 130 exposed in the second/third trimester), the prevalence of birth defects in live births was 4.2% (95% CI: 2.6% to 6.3%) and 3.0% (95% CI: 0.8% to 7.5%) with first and second/third trimester exposure, respectively, to TAF-containing regimens.

Animal Data

Darunavir: Reproduction studies conducted with darunavir showed no embryotoxicity or teratogenicity in mice (doses up to 1000 mg/kg from gestation day (GD) 6–15 with darunavir alone) and rats (doses up to 1000 mg/kg from GD 7–19 in the presence or absence of ritonavir) as well as in rabbits (doses up to 1000 mg/kg/day from GD 8–20 with darunavir alone). In these studies, darunavir exposures (based on AUC) were higher in rats (2.6-fold), whereas in mice and rabbits, exposures were lower (less than 1-fold) compared to those obtained in humans at the recommended daily dose of darunavir in SYMTUZA.

Cobicistat: Cobicistat was administered orally to pregnant rats at doses up to 125 mg/kg/day on GD 6–17. Increases in post-implantation loss and decreased fetal weights were observed at a maternal toxic dose of 125 mg/kg/day. No malformations were noted at doses up to 125 mg/kg/day. Systemic exposures (AUC) at 50 mg/kg/day in pregnant females were 1.7 times higher than human exposures at the recommended daily dose of cobicistat in SYMTUZA.

In pregnant rabbits, cobicistat was administered orally at doses up to 100 mg/kg/day during GD 7–20. No maternal or embryo/fetal effects were noted at the highest dose of 100 mg/kg/day. Systemic exposures (AUC) at 100 mg/kg/day were 4.1 times higher than human exposures at the recommended daily dose of cobicistat in SYMTUZA.

In a pre/postnatal developmental study in rats, cobicistat was administered orally at doses up to 75 mg/kg from GD 6 to postnatal day 20, 21, or 22. At doses of 75 mg/kg/day, neither maternal nor developmental toxicity was noted. Systemic exposures (AUC) at this dose were 1.1 times the human exposures at the recommended daily dose of cobicistat in SYMTUZA.

Emtricitabine: Emtricitabine was administered orally to pregnant mice and rabbits (up to 1000 mg/kg/day) through organogenesis (on GD 6 through 15, and 7 through 19, respectively). No significant toxicological effects were observed in embryo-fetal toxicity studies performed with emtricitabine in mice at exposures approximately 88 times higher and in rabbits approximately 7.3 times higher than human exposures at the recommended daily dose of emtricitabine in SYMTUZA.

In a pre/postnatal development study, mice were administered doses up to 1000 mg/kg/day; no significant adverse effects directly related to drug were observed in the offspring exposed daily from before birth (in utero) through sexual maturity at daily exposures of approximately 88 times higher than human exposures at the recommended daily dose of emtricitabine in SYMTUZA.

Tenofovir Alafenamide (TAF): TAF was administered orally to pregnant rats (up to 250 mg/kg/day) and rabbits (up to 100 mg/kg/day) through organogenesis (on GD 6 through 17, and 7 through 20, respectively). No adverse embryo-fetal effects were observed in rats and rabbits at TAF exposures approximately similar to (rats) and 85 times higher (rabbits) than the exposure in humans at the recommended daily dose. TAF is rapidly converted to tenofovir; the observed tenofovir exposure in rats and rabbits were 51 (rats) and 80 (rabbits) times higher than human tenofovir exposures at the recommended daily dose of TAF in SYMTUZA.

Since TAF is rapidly converted to tenofovir and a lower tenofovir exposure in rats and mice was observed after TAF administration compared to TDF (another prodrug of tenofovir) administration, a pre/postnatal development study in rats was conducted only with TDF. Doses up to 600 mg/kg/day were administered through lactation; no adverse effects were observed in the offspring on GD 7 [and lactation day 20] at tenofovir exposures of approximately 14 [21] times higher than the exposure in humans at the recommended daily dose of TDF.

All MedLibrary.org resources are included in as near-original form as possible, meaning that the information from the original provider has been rendered here with only typographical or stylistic modifications and not with any substantive alterations of content, meaning or intent.

This site is provided for educational and informational purposes only, in accordance with our Terms of Use, and is not intended as a substitute for the advice of a medical doctor, nurse, nurse practitioner or other qualified health professional.

Privacy Policy | Copyright © 2021. All Rights Reserved.