Tacrolimus (Page 3 of 14)

5.3 Serious Infections

Patients receiving immunosuppressants, including tacrolimus, are at increased risk of developing bacterial, viral, fungal, and protozoal infections, including opportunistic infections [see Boxed Warning and Warnings and Precautions (5.4, 5.5)]. These infections may lead to serious, including fatal, outcomes. Because of the danger of oversuppression of the immune system which can increase susceptibility to infection, combination immunosuppressant therapy should be used with caution.

5.4 Polyoma Virus Infections

Patients receiving immunosuppressants, including tacrolimus, are at increased risk for opportunistic infections, including polyoma virus infections. Polyoma virus infections in transplant patients may have serious, and sometimes fatal, outcomes. These include polyoma virus-associated nephropathy (PVAN), mostly due to BK virus infection, and JC virus-associated progressive multifocal leukoencephalopathy (PML) which have been observed in patients receiving tacrolimus [see Adverse Reactions (6.2)].

PVAN is associated with serious outcomes, including deteriorating renal function and kidney graft loss [see Adverse Reactions (6.2)]. Patient monitoring may help detect patients at risk for PVAN.

Cases of PML have been reported in patients treated with tacrolimus. PML, which is sometimes fatal, commonly presents with hemiparesis, apathy, confusion, cognitive deficiencies and ataxia. Risk factors for PML include treatment with immunosuppressant therapies and impairment of immune function. In immunosuppressed patients, physicians should consider PML in the differential diagnosis in patients reporting neurological symptoms and consultation with a neurologist should be considered as clinically indicated.

Reductions in immunosuppression should be considered for patients who develop evidence of PVAN or PML. Physicians should also consider the risk that reduced immunosuppression represents to the functioning allograft.

5.5 Cytomegalovirus (CMV) Infections

Patients receiving immunosuppressants, including tacrolimus, are at increased risk of developing CMV viremia and CMV disease. The risk of CMV disease is highest among transplant recipients seronegative for CMV at time of transplant who receive a graft from a CMV seropositive donor. Therapeutic approaches to limiting CMV disease exist and should be routinely provided. Patient monitoring may help detect patients at risk for CMV disease. Consideration should be given to reducing the amount of immunosuppression in patients who develop CMV viremia and/or CMV disease.

5.6 New Onset Diabetes After Transplant

Tacrolimus was shown to cause new onset diabetes mellitus in clinical trials of kidney, liver, and heart transplantation. New onset diabetes after transplantation may be reversible in some patients. Black and Hispanic kidney transplant patients are at an increased risk. Blood glucose concentrations should be monitored closely in patients using tacrolimus [see Adverse Reactions (6.1)].

5.7 Nephrotoxicity

Tacrolimus, like other calcineurin-inhibitors, can cause acute or chronic nephrotoxicity, particularly when used in high doses. Acute nephrotoxicity is most often related to vasoconstriction of the afferent renal arteriole, is characterized by increasing serum creatinine, hyperkalemia, and/or a decrease in urine output, and is typically reversible. Chronic calcineurin-inhibitor nephrotoxicity is associated with increased serum creatinine, decreased kidney graft life, and characteristic histologic changes observed on renal biopsy; the changes associated with chronic calcineurin-inhibitor nephrotoxicity are typically progressive. Patients with impaired renal function should be monitored closely as the dosage of tacrolimus may need to be reduced. In patients with persistent elevations of serum creatinine who are unresponsive to dosage adjustments, consideration should be given to changing to another immunosuppressive therapy.

Based on reported adverse reactions terms related to decreased renal function, nephrotoxicity was reported in approximately 52% of kidney transplantation patients and in 40% and 36% of liver transplantation patients receiving tacrolimus in the U.S. and European randomized trials, respectively, and in 59% of heart transplantation patients in a European randomized trial [see Adverse Reactions (6.1)].

Due to the potential for additive or synergistic impairment of renal function, care should be taken when administering tacrolimus with drugs that may be associated with renal dysfunction. These include, but are not limited to, aminoglycosides, ganciclovir, amphotericin B, cisplatin, nucleotide reverse transcriptase inhibitors (e.g., tenofovir) and protease inhibitors (e.g., ritonavir, indinavir). Similarly, care should be exercised when administering with CYP3A4 inhibitors such as antifungal drugs (e.g., ketoconazole), calcium channel blockers (e.g., diltiazem, verapamil), and macrolide antibiotics (e.g., clarithromycin, erythromycin, troleandomycin) which will result in increased tacrolimus whole blood concentrations due to inhibition of tacrolimus metabolism [see Drug Interactions (7.3, 7.4, 7.5, 7.6)].

5.8 Neurotoxicity

Tacrolimus may cause a spectrum of neurotoxicities, particularly when used in high doses. The most severe neurotoxicities include posterior reversible encephalopathy syndrome (PRES), delirium, and coma. Patients treated with tacrolimus have been reported to develop PRES. Symptoms indicating PRES include headache, altered mental status, seizures, visual disturbances and hypertension. Diagnosis may be confirmed by radiological procedure. If PRES is suspected or diagnosed, blood pressure control should be maintained and immediate reduction of immunosuppression is advised. This syndrome is characterized by reversal of symptoms upon reduction or discontinuation of immunosuppression.

Coma and delirium, in the absence of PRES, have also been associated with high plasma concentrations of tacrolimus. Seizures have occurred in adult and pediatric patients receiving tacrolimus [see Adverse Reactions (6.1)].

Less severe neurotoxicities, include tremors, parathesias, headache, and other changes in motor function, mental status, and sensory function [see Adverse Reactions (6.1)]. Tremor and headache have been associated with high whole-blood concentrations of tacrolimus and may respond to dosage adjustment.

5.9 Hyperkalemia

Hyperkalemia has been reported with tacrolimus use. Serum potassium levels should be monitored. Careful consideration should be given prior to use of other agents also associated with hyperkalemia (e.g., potassium-sparing diuretics, ACE inhibitors, angiotensin receptor blockers) during tacrolimus therapy [see Adverse Reactions (6.1)].

5.10 Hypertension

Hypertension is a common adverse effect of tacrolimus therapy and may require antihypertensive therapy [see Adverse Reactions (6.1)]. The control of blood pressure can be accomplished with any of the common antihypertensive agents, though careful consideration should be given prior to use of antihypertensive agents associated with hyperkalemia (e.g., potassium-sparing diuretics, ACE inhibitors, angiotensin receptor blockers) [see Warnings and Precautions (5.9)].

Calcium-channel blocking agents may increase tacrolimus blood concentrations and therefore require dosage reduction of tacrolimus [see Drug Interactions (7.5)].

5.11 Anaphylactic Reactions with Tacrolimus Injection

Anaphylactic reactions have occurred with injectables containing castor oil derivatives, including tacrolimus, in a small percentage of patients (0.6%). The exact cause of these reactions is not known. Tacrolimus injection should be reserved for patients who are unable to take tacrolimus capsules [see Indications and Usage (1.4)].

Patients receiving tacrolimus injection should be under continuous observation for at least the first 30 minutes following the start of the infusion and at frequent intervals thereafter. If signs or symptoms of anaphylaxis occur, the infusion should be stopped. An aqueous solution of epinephrine should be available at the bedside as well as a source of oxygen.

All MedLibrary.org resources are included in as near-original form as possible, meaning that the information from the original provider has been rendered here with only typographical or stylistic modifications and not with any substantive alterations of content, meaning or intent.

This site is provided for educational and informational purposes only, in accordance with our Terms of Use, and is not intended as a substitute for the advice of a medical doctor, nurse, nurse practitioner or other qualified health professional.

Privacy Policy | Copyright © 2020. All Rights Reserved.