Virazole

VIRAZOLE- ribavirin powder, for solution
Bausch Health US, LLC

PRESCRIBING INFORMATION

WARNINGS

USE OF AEROSOLIZED VIRAZOLE IN PATIENTS REQUIRING MECHANICAL VENTILATOR ASSISTANCE SHOULD BE UNDERTAKEN ONLY BY PHYSICIANS AND SUPPORT STAFF FAMILIAR WITH THE SPECIFIC VENTILATOR BEING USED AND THIS MODE OF ADMINISTRATION OF THE DRUG. STRICT ATTENTION MUST BE PAID TO PROCEDURES THAT HAVE BEEN SHOWN TO MINIMIZE THE ACCUMULATION OF DRUG PRECIPITATE, WHICH CAN RESULT IN MECHANICAL VENTILATOR DYSFUNCTION AND ASSOCIATED INCREASED PULMONARY PRESSURES (SEE WARNINGS).

SUDDEN DETERIORATION OF RESPIRATORY FUNCTION HAS BEEN ASSOCIATED WITH INITIATION OF AEROSOLIZED VIRAZOLE USE IN INFANTS. RESPIRATORY FUNCTION SHOULD BE CAREFULLY MONITORED DURING TREATMENT. IF INITIATION OF AEROSOLIZED VIRAZOLE TREATMENT APPEARS TO PRODUCE SUDDEN DETERIORATION OF RESPIRATORY FUNCTION, TREATMENT SHOULD BE STOPPED AND REINSTITUTED ONLY WITH EXTREME CAUTION, CONTINUOUS MONITORING AND CONSIDERATION OF CONCOMITANT ADMINISTRATION OF BRONCHODILATORS (SEE WARNINGS).

VIRAZOLE IS NOT INDICATED FOR USE IN ADULTS. PHYSICIANS AND PATIENTS SHOULD BE AWARE THAT RIBAVIRIN HAS BEEN SHOWN TO PRODUCE TESTICULAR LESIONS IN RODENTS AND TO BE TERATOGENIC IN ALL ANIMAL SPECIES IN WHICH ADEQUATE STUDIES HAVE BEEN CONDUCTED (RODENTS AND RABBITS) (SEE CONTRAINDICATIONS).

DESCRIPTION

VIRAZOLE® (Ribavirin for Inhalation Solution, USP) is a brand name for ribavirin, a synthetic nucleoside with antiviral activity. VIRAZOLE for inhalation solution is a sterile, lyophilized powder to be reconstituted for aerosol administration. Each 100 mL glass vial contains 6 grams of ribavirin, and when reconstituted to the recommended volume of 300 mL with Sterile Water for Injection, USP or Sterile Water for Inhalation (no preservatives added), will contain 20 mg of ribavirin per mL, pH approximately 5.5. Aerosolization is to be carried out in a Small Particle Aerosol Generator (SPAG® -2) nebulizer only.

Ribavirin is 1-beta-D-ribofuranosyl-1H-1,2,4-triazole-3-carboxamide, with the following structural formula:

541adf1b-figure-01

Ribavirin is a stable, white crystalline compound with a maximum solubility in water of 142 mg/mL at 25°C and with only a slight solubility in ethanol. The empirical formula is C8 H12 N4 O5 and the molecular weight is 244.21.

CLINICAL PHARMACOLOGY

Mechanism of Action

In cell cultures the inhibitory activity of ribavirin for respiratory syncytial virus (RSV) is selective. The mechanism of action is unknown. Reversal of the in vitro antiviral activity by guanosine or xanthosine suggests ribavirin may act as an analogue of these cellular metabolites.

Microbiology

Ribavirin has demonstrated antiviral activity against RSV in vitro 1 and in experimentally infected cotton rats.2 Several clinical isolates of RSV were evaluated for ribavirin susceptibility by plaque reduction in tissue culture. Plaques were reduced 85-98% by 16 mcg/mL; however, results may vary with the test system. The development of resistance has not been evaluated in vitro or in clinical trials.

In addition to the above, ribavirin has been shown to have in vitro activity against influenza A and B viruses and herpes simplex virus, but the clinical significance of these data is unknown.

Immunologic Effects

Neutralizing antibody responses to RSV were decreased in aerosolized VIRAZOLE-treated infants compared to placebo-treated infants.3 One study also showed that RSV-specific IgE antibody in bronchial secretions was decreased in patients treated with aerosolized VIRAZOLE. In rats, ribavirin administration resulted in lymphoid atrophy of the thymus, spleen and lymph nodes. Humoral immunity was reduced in guinea pigs and ferrets. Cellular immunity was also mildly depressed in animal studies. The clinical significance of these observations is unknown.

Pharmacokinetics

Assay for VIRAZOLE in human materials is by a radioimmunoassay which detects ribavirin and at least one metabolite.

VIRAZOLE brand of ribavirin, when administered by aerosol, is absorbed systemically. Four pediatric patients inhaling VIRAZOLE aerosol administered by face mask for 2.5 hours each day for 3 days had plasma concentrations ranging from 0.44 to 1.55 µ M, with a mean concentration of 0.76 µ M. The plasma half-life was reported to be 9.5 hours. Three pediatric patients inhaling aerosolized VIRAZOLE administered by face mask or mist tent for 20 hours each day for 5 days had plasma concentrations ranging from 1.5 to 14.3 µ M, with a mean concentration of 6.8 µ M.

The bioavailability of aerosolized VIRAZOLE is unknown and may depend on the mode of aerosol delivery. After aerosol treatment, peak plasma concentrations of ribavirin are 85% to 98% less than the concentration that reduced RSV plaque formation in tissue culture. After aerosol treatment, respiratory tract secretions are likely to contain ribavirin in concentrations manyfold higher than those required to reduce plaque formation. However, RSV is an intracellular virus, and it is unknown whether plasma concentrations or respiratory secretion concentrations of the drug better reflect intracellular concentrations in the respiratory tract.

In man, rats, and rhesus monkeys, accumulation of ribavirin and/or metabolites in the red blood cells has been noted, plateauing in red cells in man in about 4 days and gradually declining with an apparent half-life of 40 days (the half-life of erythrocytes). The extent of accumulation of ribavirin following inhalation therapy is not well defined.

Animal Toxicology

Ribavirin, when administered orally or as an aerosol, produced cardiac lesions in mice, rats, and monkeys, when given at doses of 30, 36 and 120 mg/kg or greater for 4 weeks or more (estimated human equivalent doses of 4.8, 12.3 and 111.4 mg/kg for a 5 kg child, or 2.5, 5.1 and 40 mg/kg for a 60 kg adult, based on body surface area adjustment). Aerosolized ribavirin administered to developing ferrets at 60 mg/kg for 10 or 30 days resulted in inflammatory and possibly emphysematous changes in the lungs. Proliferative changes were seen in the lungs following exposure at 131 mg/kg for 30 days. The significance of these findings to human administration is unknown.

INDICATIONS AND USAGE

VIRAZOLE® (Ribavirin for Inhalation Solution, USP) is indicated for the treatment of hospitalized infants and young children with severe lower respiratory tract infections due to RSV. Treatment early in the course of severe lower respiratory tract infection may be necessary to achieve efficacy.

Only severe RSV lower respiratory tract infection should be treated with VIRAZOLE. The vast majority of infants and children with RSV infection have disease that is mild, self-limited, and does not require hospitalization or antiviral treatment. Many children with mild lower respiratory tract involvement will require shorter hospitalization than would be required for a full course of VIRAZOLE aerosol (3 to 7 days) and should not be treated with the drug. Thus the decision to treat with VIRAZOLE should be based on the severity of the RSV infection. The presence of an underlying condition such as prematurity, immunosuppression or cardiopulmonary disease may increase the severity of clinical manifestations and complications of RSV infection.

Use of aerosolized VIRAZOLE in patients requiring mechanical ventilator assistance should be undertaken only by physicians and support staff familiar with this mode of administration and the specific ventilator being used (see WARNINGS and DOSAGE AND ADMINISTRATION).

Diagnosis

RSV infection should be documented by a rapid diagnostic method such as demonstration of viral antigen in respiratory tract secretions by immunofluorescence3,4 or ELISA5 before or during the first 24 hours of treatment. Treatment may be initiated while awaiting rapid diagnostic test results. However, treatment should not be continued without documentation of RSV infection. Non-culture antigen detection techniques may have false positive or false negative results. Assessment of the clinical situation, the time of year and other parameters may warrant reevaluation of the laboratory diagnosis.

Description of Studies

Non-Mechanically Ventilated Infants: In two placebo-controlled trials in infants hospitalized with RSV lower respiratory tract infection, aerosolized VIRAZOLE treatment had a therapeutic effect, as judged by the reduction in severity of clinical manifestations of disease by treatment day 3.3,4 Treatment was most effective when instituted within the first 3 days of clinical illness. Virus titers in respiratory secretions were also significantly reduced with VIRAZOLE in one of these original studies.4 Additional controlled studies conducted since these initial trials of aerosolized VIRAZOLE in the treatment of RSV infection have supported these data.

Mechanically Ventilated Infants: A randomized, double-blind, placebo-controlled evaluation of aerosolized VIRAZOLE at the recommended dose was conducted in 28 infants requiring mechanical ventilation for respiratory failure caused by documented RSV infection.6 Mean age was 1.4 months (SD, 1.7 months). Seven patients had underlying diseases predisposing them to severe infection and 21 were previously normal. Aerosolized VIRAZOLE treatment significantly decreased the duration of mechanical ventilation required (4.9 vs. 9.9 days, p=0.01) and duration of required supplemental oxygen (8.7 vs. 13.5 days, p=0.01). Intensive patient management and monitoring techniques were employed in this study. These included endotracheal tube suctioning every 1 to 2 hours; recording of proximal airway pressure, ventilatory rate, and Fl O2 every hour; and arterial blood gas monitoring every 2 to 6 hours. To reduce the risk of VIRAZOLE precipitation and ventilator malfunction, heated wire tubing, two bacterial filters connected in series in the expiratory limb of the ventilator (with filter changes every 4 hours), and water column pressure release valves to monitor internal ventilator pressures were used in connecting ventilator circuits to the SPAG® -2.

Employing these techniques, no technical difficulties with VIRAZOLE administration were encountered during the study. Adverse events consisted of bacterial pneumonia in one case, staphylococcus bacteremia in one case and two cases of post-extubation stridor. None were felt to be related to VIRAZOLE administration.

Page 1 of 4 1 2 3 4

All MedLibrary.org resources are included in as near-original form as possible, meaning that the information from the original provider has been rendered here with only typographical or stylistic modifications and not with any substantive alterations of content, meaning or intent.

This site is provided for educational and informational purposes only, in accordance with our Terms of Use, and is not intended as a substitute for the advice of a medical doctor, nurse, nurse practitioner or other qualified health professional.

Privacy Policy | Copyright © 2024. All Rights Reserved.