Warfarin Sodium (Page 4 of 10)

5.8 Endogenous Factors Affecting INR

The following factors may be responsible for increased INR response: diarrhea, hepatic disorders, poor nutritional state, steatorrhea or vitamin K deficiency.

The following factors may be responsible for decreased INR response: increased vitamin K intake or hereditary warfarin resistance.

6 ADVERSE REACTIONS

The following serious adverse reactions to warfarin are discussed in greater detail in other sections of the labeling:

Other adverse reactions to warfarin include:

  • Immune system disorders: hypersensitivity/allergic reactions (including urticaria and anaphylactic reactions)
  • Vascular disorders: vasculitis
  • Hepatobiliary disorders: hepatitis, elevated liver enzymes. Cholestatic hepatitis has been associated with concomitant administration of warfarin and ticlopidine.
  • Gastrointestinal disorders: nausea, vomiting, diarrhea, taste perversion, abdominal pain, flatulence, bloating
  • Skin disorders: rash, dermatitis (including bullous eruptions), pruritus, alopecia

    Respiratory disorders: tracheal or tracheobronchial calcification

  • General disorders: chills

7 DRUG INTERACTIONS

Drugs may interact with warfarin through pharmacodynamic or pharmacokinetic mechanisms. Pharmacodynamic mechanisms for drug interactions with warfarin are synergism (impaired hemostasis, reduced clotting factor synthesis), competitive antagonism (vitamin K) and alteration of the physiologic control loop for vitamin K metabolism (hereditary resistance). Pharmacokinetic mechanisms for drug interactions with warfarin are mainly enzyme induction, enzyme inhibition and reduced plasma protein binding. It is important to note that some drugs may interact by more than one mechanism.

More frequent INR monitoring should be performed when starting or stopping other drugs, including botanicals, or when changing dosages of other drugs, including drugs intended for short-term use (e.g., antibiotics, antifungals, corticosteroids) [see Boxed Warning].

Consult the labeling of all concurrently used drugs to obtain further information about interactions with warfarin or adverse reactions pertaining to bleeding.

7.1 CYP450 Interactions

CYP450 isozymes involved in the metabolism of warfarin include CYP2C9, 2C19, 2C8, 2C18, 1A2 and 3A4. The more potent warfarin S- enantiomer is metabolized by CYP2C9 while the R -enantiomer is metabolized by CYP1A2 and 3A4.

  • Inhibitors of CYP2C9, 1A2 and/or 3A4 have the potential to increase the effect (increase INR) of warfarin by increasing the exposure of warfarin.
  • Inducers of CYP2C9, 1A2 and/or 3A4 have the potential to decrease the effect (decrease INR) of warfarin by decreasing the exposure of warfarin.

Examples of inhibitors and inducers of CYP2C9, 1A2 and 3A4 are below in Table 2; however, this list should not be considered all-inclusive. Consult the labeling of all concurrently used drugs to obtain further information about CYP450 interaction potential. The CYP450 inhibition and induction potential should be considered when starting, stopping or changing dose of concomitant mediations. Closely monitor INR if a concomitant drug is a CYP2C9, 1A2 and/or 3A4 inhibitor or inducer.

Table 2: Examples of CYP450 Interactions with Warfarin
Enzyme Inhibitors Inducers
CYP2C9 amiodarone, capecitabine, cotrimoxazole, etravirine, fluconazole, fluvastatin, fluvoxamine, metronidazole miconazole, oxandrolone, sulfinpyrazone, tigecycline, voriconazole, zafirlukast aprepitant, bosentan, carbamazepine, phenobarbital, rifampin
CYP1A2 acyclovir, allopurinol, caffeine, cimetidine, ciprofloxacin, disulfiram, enoxacin, famotidine, fluvoxamine, methoxsalen, mexiletine, norfloxacin, oral contraceptives, phenylpropanolamine, propafenone, propranolol, terbinafine, thiabendazole, ticlopidine, verapamil, zileuton montelukast, moricizine, omeprazole, phenobarbital, phenytoin, cigarette smoking
CYP3A4 alprazolam, amiodarone, amlodipine, amprenavir, aprepitant, atorvastatin, atazanavir, bicalutamide, cilostazol, cimetidine, ciprofloxacin, clarithromycin, conivaptan, cyclosporine, darunavir/ritonavir, diltiazem, erythromycin, fluconazole, fluoxetine, fluvoxamine, fosamprenavir, imatinib, indinavir, isoniazid, itraconazole, ketoconazole, lopinavir/ritonavir, nefazodone, nelfinavir, nilotinib, oral contraceptives, posaconazole, ranitidine, ranolazine, ritonavir, saquinavir, telithromycin, tipranavir, voriconazole, zileuton armodafinil, amprenavir, aprepitant, bosentan, carbamazepine, efavirenz, etravirine, modafinil, nafcillin, phenytoin, pioglitazone, prednisone, rifampin, rufinamide

7.2 Drugs that Increase Bleeding Risk

Examples of drugs known to increase the risk of bleeding are presented in Table 3. Because bleeding risk is increased when these drugs are used concomitantly with warfarin, closely monitor patients receiving any such drug with warfarin.

Table 3: Drugs that Can Increase the Risk of Bleeding
Drug Class Specific Drugs
Anticoagulants argatroban, dabigatran, bivalirudin, desirudin, heparin, lepirudin
Antiplatelet Agents aspirin, cilostazol, clopidogrel, dipyridamole, prasugrel, ticlopidine
Non-Steroidal Anti-Inflammatory Agents celecoxib, diclofenac, diflunisal, fenoprofen, ibuprofen, indomethacin, ketoprofen, ketorolac, mefenamic acid, naproxen, oxaprozin, piroxicam, sulindac
Serotonin Reuptake Inhibitors citalopram, desvenlafaxine, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, venlafaxine, vilazodone

7.3 Antibiotics and Antifungals

There have been reports of changes in INR in patients taking warfarin and antibiotics or antifungals, but clinical pharmacokinetic studies have not shown consistent effects of these agents on plasma concentrations of warfarin.

Closely monitor INR when starting or stopping any antibiotic or antifungal in patients taking warfarin.

7.4 Botanical (Herbal) Products and Foods

Exercise caution when botanical (herbal) products are taken concomitantly with warfarin. Few adequate, well controlled studies evaluating the potential for metabolic and/or pharmacologic interactions between botanicals and warfarin exist. Due to a lack of manufacturing standardization with botanical medicinal preparations, the amount of active ingredients may vary. This could further confound the ability to assess potential interactions and effects on anticoagulation.

Some botanicals may cause bleeding events when taken alone (e.g., garlic and Ginkgo biloba) and may have anticoagulant, antiplatelet and/or fibrinolytic properties. These effects would be expected to be additive to the anticoagulant effects of warfarin. Conversely, some botanicals may decrease the effects of warfarin (e.g., co-enzyme Q10, St. John’s wort ginseng). Some botanicals and foods can interact with warfarin through CYP450 interactions (e.g., echinacea, grapefruit juice, ginkgo, goldenseal, St. John’s wort).

Monitor the patient’s response with additional INR determinations when initiating or discontinuing any botanicals.

All MedLibrary.org resources are included in as near-original form as possible, meaning that the information from the original provider has been rendered here with only typographical or stylistic modifications and not with any substantive alterations of content, meaning or intent.

This site is provided for educational and informational purposes only, in accordance with our Terms of Use, and is not intended as a substitute for the advice of a medical doctor, nurse, nurse practitioner or other qualified health professional.

Privacy Policy | Copyright © 2020. All Rights Reserved.