Ziprasidone Hydrochloride (Page 5 of 7)

8.3 Nursing Mothers

It is not known whether ziprasidone or its metabolites are excreted in human milk. It is recommended that women receiving ziprasidone should not breastfeed.

8.4 Pediatric Use

The safety and effectiveness of ziprasidone in pediatric patients have not been established.

8.5 Geriatric Use

Of the total number of subjects in clinical studies of ziprasidone, 2.4 percent were 65 and over. No overall differences in safety or effectiveness were observed between these subjects and younger subjects, and other reported clinical experience has not identified differences in responses between the elderly and younger patients, but greater sensitivity of some older individuals cannot be ruled out. Nevertheless, the presence of multiple factors that might increase the pharmacodynamic response to ziprasidone, or cause poorer tolerance or orthostasis, should lead to consideration of a lower starting dose, slower titration, and careful monitoring during the initial dosing period for some elderly patients.

8.6 Renal Impairment

Because ziprasidone is highly metabolized, with less than 1% of the drug excreted unchanged, renal impairment alone is unlikely to have a major impact on the pharmacokinetics of ziprasidone. The pharmacokinetics of ziprasidone following 8 days of 20 mg twice daily dosing were similar among subjects with varying degrees of renal impairment (n=27), and subjects with normal renal function, indicating that dosage adjustment based upon the degree of renal impairment is not required. Ziprasidone is not removed by hemodialysis.

8.7 Hepatic Impairment

As ziprasidone is cleared substantially by the liver, the presence of hepatic impairment would be expected to increase the AUC of ziprasidone; a multiple-dose study at 20 mg twice daily for 5 days in subjects (n=13) with clinically significant (Childs-Pugh Class A and B) cirrhosis revealed an increase in AUC 0 to 12 of 13% and 34% in Childs-Pugh Class A and B, respectively, compared to a matched control group (n=14). A half-life of 7.1 hours was observed in subjects with cirrhosis compared to 4.8 hours in the control group.

8.8 Age and Gender Effects

In a multiple-dose (8 days of treatment) study involving 32 subjects, there was no difference in the pharmacokinetics of ziprasidone between men and women or between elderly (>65 years) and young (18 to 45 years) subjects. Additionally, population pharmacokinetic evaluation of patients in controlled trials has revealed no evidence of clinically significant age or gender-related differences in the pharmacokinetics of ziprasidone. Dosage modifications for age or gender are, therefore, not recommended.

8.9 Smoking

Based on in vitro studies utilizing human liver enzymes, ziprasidone is not a substrate for CYP1A2; smoking should therefore not have an effect on the pharmacokinetics of ziprasidone. Consistent with these in vitro results, population pharmacokinetic evaluation has not revealed any significant pharmacokinetic differences between smokers and nonsmokers.

9 DRUG ABUSE AND DEPENDENCE

9.3 Dependence

Ziprasidone has not been systematically studied, in animals or humans, for its potential for abuse, tolerance, or physical dependence. While the clinical trials did not reveal any tendency for drug-seeking behavior, these observations were not systematic and it is not possible to predict on the basis of this limited experience the extent to which ziprasidone will be misused, diverted, and/or abused once marketed. Consequently, patients should be evaluated carefully for a history of drug abuse, and such patients should be observed closely for signs of ziprasidone misuse or abuse (e.g., development of tolerance, increases in dose, drug-seeking behavior).

10 OVERDOSAGE

10.1 Human Experience

In premarketing trials involving more than 5400 patients and/or normal subjects, accidental or intentional overdosage of oral ziprasidone was documented in 10 patients. All of these patients survived without sequelae. In the patient taking the largest confirmed amount, 3,240 mg, the only symptoms reported were minimal sedation, slurring of speech, and transitory hypertension (200/95).

Adverse reactions reported with ziprasidone overdose included extrapyramidal symptoms, somnolence, tremor, and anxiety [see Adverse Reactions (6.2)].

10.2 Management of Overdosage

In case of acute overdosage, establish and maintain an airway and ensure adequate oxygenation and ventilation. Intravenous access should be established, and gastric lavage (after intubation, if patient is unconscious) and administration of activated charcoal together with a laxative should be considered. The possibility of obtundation, seizure, or dystonic reaction of the head and neck following overdose may create a risk of aspiration with induced emesis.

Cardiovascular monitoring should commence immediately and should include continuous electrocardiographic monitoring to detect possible arrhythmias. If antiarrhythmic therapy is administered, disopyramide, procainamide, and quinidine carry a theoretical hazard of additive QT-prolonging effects that might be additive to those of ziprasidone.

Hypotension and circulatory collapse should be treated with appropriate measures such as intravenous fluids. If sympathomimetic agents are used for vascular support, epinephrine and dopamine should not be used, since beta stimulation combined with α1 antagonism associated with ziprasidone may worsen hypotension. Similarly, it is reasonable to expect that the alpha-adrenergic-blocking properties of bretylium might be additive to those of ziprasidone, resulting in problematic hypotension.

In cases of severe extrapyramidal symptoms, anticholinergic medication should be administered. There is no specific antidote to ziprasidone, and it is not dialyzable. The possibility of multiple drug involvement should be considered. Close medical supervision and monitoring should continue until the patient recovers.

11 DESCRIPTION

Ziprasidone is available as ziprasidone hydrochloride capsules for oral administration. Ziprasidone is a psychotropic agent that is chemically unrelated to phenothiazine or butyrophenone antipsychotic agents. It has a molecular weight of 412.94 (free base), with the following chemical name: 5-[2-[4-(1,2-benzisothiazol-3-yl)-1-piperazinyl]ethyl]-6-chloro-1,3-dihydro-2H -indol-2-one. The molecular formula of C21 H21 ClN4 OS (free base of ziprasidone) represents the following structural formula:

chemical-structure

Ziprasidone hydrochloride capsules contain a monohydrochloride salt of ziprasidone. Chemically, ziprasidone hydrochloride is 5-[2-[4-(1,2-‑benzisothiazol-3-yl)-1-piperazinyl]ethyl]-6-chloro-1,3-dihydro-2H -indol-2-one, monohydrochloride. The molecular formula is C21 H21 ClN4 OS · HCl and its molecular weight is 449.40. Ziprasidone hydrochloride is an off white to beige brown powder.

Ziprasidone hydrochloride capsules are supplied for oral administration in 20 mg (of ziprasidone free base), 40 mg (of ziprasidone free base), 60 mg (of ziprasidone free base), and 80 mg (of ziprasidone free base) capsules. Ziprasidone hydrochloride capsules contain ziprasidone hydrochloride, colloidal silicon dioxide, crospovidone, sodium starch glycolate, and magnesium stearate. Each capsule shell contains the following inactive ingredients: gelatin and titanium dioxide. The 20 mg, 40 mg and 80 mg capsule shells also contain the following inactive ingredients: D&C Red #28, FD&C Blue #1, FD&C Yellow #6. The capsule imprinting ink contains ammonium hydroxide, black iron oxide, ethyl alcohol, isopropyl alcohol, butyl alcohol, potassium hydroxide, propylene glycol and shellac.

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action

The mechanism of action of ziprasidone, as with other drugs having efficacy in schizophrenia, is unknown. However, it has been proposed that this drug’s efficacy in schizophrenia is mediated through a combination of dopamine type 2 (D2 ) and serotonin type 2 (5HT2 ) antagonism.

12.2 Pharmacodynamics

Ziprasidone exhibited high in vitro binding affinity for the dopamine D2 and D3 , the serotonin 5HT2A , 5HT2C , 5HT1A , 5HT1D , and α1 -adrenergic receptors (Ki s of 4.8, 7.2, 0.4, 1.3, 3.4, 2, and 10 nM, respectively), and moderate affinity for the histamine H1 receptor (Ki =47 nM). Ziprasidone functioned as an antagonist at the D2 , 5HT2A , and 5HT1D receptors, and as an agonist at the 5HT1A receptor. Ziprasidone inhibited synaptic reuptake of serotonin and norepinephrine. No appreciable affinity was exhibited for other receptor/binding sites tested, including the cholinergic muscarinic receptor (IC50 >1 mcM). Antagonism at receptors other than dopamine and 5HT2 with similar receptor affinities may explain some of the other therapeutic and side effects of ziprasidone. Ziprasidone’s antagonism of histamine H1 receptors may explain the somnolence observed with this drug. Ziprasidone’s antagonism of α1 -adrenergic receptors may explain the orthostatic hypotension observed with this drug.

All MedLibrary.org resources are included in as near-original form as possible, meaning that the information from the original provider has been rendered here with only typographical or stylistic modifications and not with any substantive alterations of content, meaning or intent.

This site is provided for educational and informational purposes only, in accordance with our Terms of Use, and is not intended as a substitute for the advice of a medical doctor, nurse, nurse practitioner or other qualified health professional.

Privacy Policy | Copyright © 2021. All Rights Reserved.